Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

591 results about "Potential well" patented technology

A potential well is the region surrounding a local minimum of potential energy. Energy captured in a potential well is unable to convert to another type of energy (kinetic energy in the case of a gravitational potential well) because it is captured in the local minimum of a potential well. Therefore, a body may not proceed to the global minimum of potential energy, as it would naturally tend to due to entropy.

LED (Light Emitting Diode) epitaxial structure with P (Positive) type superlattice and preparation method thereof

The invention discloses an LED (Light Emitting Diode) epitaxial structure with a P (Positive) type superlattice and a preparation method thereof. The epitaxial structure comprises a substrate, wherein a GaN (Gallium Nitride) buffer layer, an undoped GaN layer, an n (negative) type GaN layer, a multi-quantum well luminous layer, a first P type GaN layer, a P type AlGaN (Aluminium Gallium Nitride) electronic blocking layer and a second P type GaN layer are sequentially arranged on the substrate from bottom to top, and the P type superlattice formed by a PInGaN (P type Indium Gallium Nitride) potential well layer and a PAlGaN potential barrier layer in a periodic interactive overlapping way is arranged between the P type AlGaN electronic blocking layer and the second P type GaN layer. The PInGaN potential well layer in the P type superlattice generates and constrains a great number of holes for the formation of a two-dimensional hole high-density state; the PAlGaN potential barrier layer hinders the escape of the holes; in such a way, the transverse spreading of the holes is improved, the electron overflow can be prevented, the hole injection efficiency is increased and the electron and hole recombination probability is improved; and therefore, the brightness of a chip can be improved by 5-10%.
Owner:XIANGNENG HUALEI OPTOELECTRONICS

Nitride LED (light-emitting diode) structure and nitride LED structure preparing method

The invention discloses a nitride LED (light-emitting diode) structure. A P-type doped InGaN/GaN superlattice structure is inserted between a multiple quantum well active layer and an electronic barrier layer so as to improve the hole concentration and reduce the dosage concentration of the P-type hole injection layer; the superlattice structure has polarization effect, thus being capable of improving the doping efficiency and reducing the P-type impurity concentration; and impurity atoms are prevented from being diffused to the potential well, and the inner quantum efficiency and the luminous efficiency of the device can be improved. The invention also discloses a preparation method of the nitride LED structure, through inserting the P-type doped InGaN/GaN superlattice structure between the multiple quantum well active layer and the electronic barrier layer, the hole concentration can be improved, and the dosage concentration of the P-type hole injection layer can be reduced; since the superlattice structure has polarization effect, the doping efficiency can be improved and the P-type impurity concentration can be reduced; and the impurity atoms are prevented from being diffused to the potential well, and the inner quantum efficiency and the luminous efficiency of the device can be improved.
Owner:ENRAYTEK OPTOELECTRONICS

Preparation method of multiple quantum well structure for photoelectric device

ActiveCN102103990AImprove the broadening effectImprove life test performanceLaser detailsFinal product manufacturePotential wellElectronic band structure
The invention discloses a preparation method of a multiple quantum well structure for a photoelectric device. The multiple quantum well structure comprises n quantum well structures which are overlapped in sequence, and each quantum well structure is formed by sequential growth of potential well layers and potential barriers, wherein the growth of each potential well layer comprises the following steps: 1, first growing an NixGa1-xN potential well layer, wherein x is more than 0.1 and less than 0.45; 2, growing a GaN insert layer; and 3, growing the InxGa1-xN potential well layer, wherein x is more than 0.1 and less than 0.45. When the potential well layer grows, one or more than two of GaN insert layers with energy band width different from that of the InxGa1-xN potential well layer and an In treatment layer grow alternately. On the one hand, the In treatment layer can stabilize the structure of the InxGa1-xN, ensures the stability of quantum well components, and controls the stability and consistency of wavelength; on the other hand, the GaN insert layer disturbs the energy band structure of a quantum well region to improve the composite rate of electron hole pairs, so that the internal quantum efficiency of device illumination is improved, and as the brightness is improved, the life test performance of the device can be improved.
Owner:EPILIGHT TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products