Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

679 results about "Optical pumping" patented technology

Optical pumping is a process in which light is used to raise (or "pump") electrons from a lower energy level in an atom or molecule to a higher one. It is commonly used in laser construction, to pump the active laser medium so as to achieve population inversion. The technique was developed by 1966 Nobel Prize winner Alfred Kastler in the early 1950s. Optical pumping is also used to cyclically pump electrons bound within an atom or molecule to a well-defined quantum state.

Build-up structures with multi-angle vias for chip to chip interconnects and optical bussing

A build-up structure for chip to chip interconnects and System-In-Package utilizing multi-angle vias for electrical and optical routing or bussing of electronic information and controlled CTE dielectrics including mesocomposites to achieve optimum electrical and optical performance of monolithic structures. Die, multiple die, Microelectromechanical Machines (MEMs) and / or other active or passive components such as transducers or capacitors can be accurately positioned on a substrate such as a copper heatsink and multi-angle stud bumps can be placed on the active sites of the components. A first dielectric layer is preferably placed on the components, thereby embedding the components in the structure. Through various processes of photolithography, laser machining, soft lithography or anisotropic conductive film bonding, escape routing and circuitry is formed on the first metal layer. Additional dielectric layers and metal circuitry are formed utilizing multi-angle vias to form escape routing from tight pitch bond pads on the die to other active and passive components. Multi-angle vias can carry electrical or optical information in the form of digital or analog electromagnetic current, or in the form of visible or non-visible optical bussing and interconnections.
Owner:CAPITALSOURCE FINANCE

Inertia and magnetic field integration measuring method based on SERF (spin-exchange-relaxation-free) atomic spin effect

The invention provides an inertia and magnetic field integration measuring method based on an SERF (spin-exchange-relaxation-free) atomic spin effect. The inertia and magnetic field integration measuring method based on the SERF atomic spin effect comprises the following steps: firstly establishing an overall model for the inertia and magnetic field integration measurement; secondly, manufacturing a measurement sensing unit, and carrying out high-frequency alternating current non-magnetic electric heating; starting a driving laser (z-axis) for carrying out optical pumping on the sensing unit; and emitting a detection laser (x-axis) in a direction vertical to the z-axis; thirdly, carrying out driving magnetic compensation through a three-dimensional magnetic compensation coil so as to counteract a magnetic field of the outside world; fourthly, carrying out azimuth alignment on a main magnetic field and the driving laser and hyperpolarization nucleon self-spin so as to realize the nuclear spin-electron spin strong coupling; fifthly, extracting the information of the atomic spin precession movement in the detection laser by adopting a closed-loop faraday modulation detection method, and obtaining inertia angular speed information; and finally, obtaining the current value of a compensation signal of the magnetic field, and calculating to obtain the information of the current magnetic field. The inertia and magnetic field integration measuring method based on the SERF atomic spin effect has the characteristics of high measurement accuracy and strong autonomy.
Owner:BEIHANG UNIV +1

Laser rod thermalization

A method for operating an extracavity frequency-converted solid-state laser for performing a laser processing operation is disclosed. The laser has a laser-resonator including an optically-pumped gain-medium. The resonator is configured to compensate for a predetermined range of thermal lensing in the gain-medium. An optically-nonlinear crystal located outside the resonator converts fundamental laser radiation delivered by the resonator into frequency converted radiation. The laser processing operation is performed by a train of pulses of the frequency-converted radiation having sufficient power to perform the processing operation. The power of frequency-converted radiation is dependent on delivery parameters of the laser radiation from the laser-resonator. The laser is operated in a manner which provides that the resonator delivers effectively the same average power of fundamental laser radiation before and during the laser processing operation. This provides that thermal-lensing in the gain-medium is within the predetermined range before and during a laser processing operation. Delivery parameters of the laser radiation before and during the processing operation are varied such that power of frequency-converted radiation generated before the processing operating is insufficient to perform a laser processing operation.
Owner:COHERENT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products