Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

388 results about "Proton NMR" patented technology

Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or ¹H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. In samples where natural hydrogen (H) is used, practically all the hydrogen consists of the isotope H (hydrogen-1; i.e. having a proton for a nucleus).

Downhole high resolution NMR spectroscopy with polarization enhancement

An apparatus and method is discussed for characterizing a fluid sample downhole of aliphatic hydrocarbon compounds, aromatic hydrocarbon compound, or connate mud filtrates containing carbon-13 isotopes using an enhanced nuclear magnetic resonance (NMR) signal on a measurement-while-drilling device. To enhance the carbon-13 NMR signal these nuclei are being hyperpolarized. Either the Overhauser Effect (OE) or the Nuclear Overhauser Effect or optical pumping and the Spin Polarization Induced Nuclear Overhauser Effect (SPINOE) can serve as a mechanism for hyperpolarization of the carbon-13 nuclei.
Owner:BAKER HUGHES HLDG LLC

Nuclear magnetic resonance equipment

The invention provides nuclear magnetic resonance equipment realizing improved sensitivity of a probe for receiving a free induction decay (FID) signal in nuclear magnetic resonance (NMR) spectroscopy in a high frequency band of 600 MHz or higher. By manufacturing a solenoid coil of a higher filling factor by using a superconductor of extremely low resistance to high frequency current, sensitivity is increased. A superconducting thin film made of magnesium diboride (MgB2) formed on a donut plate-type substrate is disposed so that the film surface becomes parallel with the uniform magnetic field. The object is realized by a probe made by a solenoid coil formed by connecting a plurality of coil parts by capacitive coupling via a normal metal lead.
Owner:HITACHI LTD

Apparatus and method for measuring stratum rock physical property by rock NMR relaxation signal

The invention discloses a rock nuclear magnetic resonance relaxation signal measuring device of formation rock matter property, which comprises the following parts: magnet, probe, preposition amplifier, power amplifier, nuclear magnetic resonance controller and control computer, wherein the nuclear magnetic resonance controller generates specific frequency and waveshape radio frequency actuation impulse, which is sent to the nuclear magnetic resonance probe in the magnet after magnified; the rock sample is set in the exciting probe, which generates nuclear magnetic resonance backward wave signal; the nuclear magnetic resonance probe receives the backward wave signal and sends to the nuclear magnetic resonance controller after magnified, which is sent to the computer finally. The invention can generate the parameter for usage directly, which can be applied in the oil field nuclear magnetic resonance well.
Owner:PEKING UNIV

High-temperature high-pressure clamp for testing rock core by nuclear magnetic resonance

The invention provides a high-temperature high-pressure clamp for testing rock core by nuclear magnetic resonance, which is applied to rock core dynamic experiments in a laboratory. The clamp mainly comprises an annulus pressure part, a high-temperature heating part, a displace part and a nuclear magnetic resonance part, wherein a sealing end cover and a lock nut are arranged at two ends of a cavity of the clamp; an annulus pressure oil inlet pipe and an annulus pressure oil drain pipe pass through the sealing end cover and are communicated with the cavity of the clamp; a spiral heat-conducting oil pipe is arranged between an insulating shell and the cavity of the clamp; two cylindrical rock core tops and sealing members are arranged in a fluorine rubber tube; a displacing oil inlet pipe and a displacing oil outlet pipe are fixed at two ends of the cylindrical sealing members; a nuclear magnetic resonance coil frame is arranged in the cavity of the clamp; and a nuclear magnetic resonance coil is arranged in an annular space formed between the outer wall of the nuclear magnetic resonance coil frame and the cavity of the clamp. The clamp has the advantages of simulating temperature and pressure of the rock core in the stratum to ensure that a nuclear magnetic resonance instrument can measure the physical parameters of the rock core under the condition of simulating the stratum.
Owner:PETROCHINA CO LTD

Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and / or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and / or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.
Owner:RGT UNIV OF CALIFORNIA

System and method for emulating nuclear magnetic resonance well logging tool diffusion editing measurements on a bench-top nuclear magnetic resonance spectrometer for laboratory-scale rock core analysis

A laboratory NMR methodology (and corresponding laboratory apparatus) defines a sample volume. The method stores downhole tool data corresponding to a hydrocarbon-bearing sample collected from a given subsurface formation. The downhole tool data includes parameters pertaining to magnetic fields used by a downhole tool during a suite of NMR measurements of the given subsurface formation. The sample is positioned in the sample volume of the laboratory apparatus, which applies a static magnetic field in the sample volume. Furthermore, the laboratory apparatus applies a suite of NMR measurements to the sample volume to thereby determine a property of the sample. The NMR measurements of the suite each include a pulse sequence of oscillating magnetic field in conjunction with a pulsed-mode gradient field. The pulsed-mode gradient field is based on the stored downhole tool data corresponding to the sample. A laboratory NMR methodology for optimizing downhole NMR measurements is also described.
Owner:SCHLUMBERGER TECH CORP

Rock core holder compatible with nuclear magnetic resonance

The invention relates to a rock core holder compatible with nuclear magnetic resonance, which can simulate pressures and temperatures of deep reservoirs, perform oil water displacement of a rock core under simulated formation conditions, and simultaneously perform nuclear magnetic resonance on-line measurement. According to the invention, a radio frequency coil is embedded in the rock core holder, and the signal to noise ratio is greatly increased when the rock core holder is compared with a conventional rock core holder. The rock core holder is made of nonmagnetic nonmetal materials, which avoids the damage of the magnetic field uniformity caused by magnetic materials, and also avoids the generation of eddy current in the holder by a pulse gradient. Compared with a conventional rock core holder, the invention not only greatly increases the signal to noise ratio, but also fully ensures the accuracy of nuclear magnetic resonance measurement results at a high temperature and a high pressure. The holder is applicable to on-line measurement of nuclear magnetic resonance relaxation spectra, diffusion-relaxation two-dimensional spectra, and imaging methods during rock core oil water displacement at a high temperature and a high pressure. In addition, the invention performs real-time tracking compensation of temperatures and pressures of ring-crush fluid, and thus ensures the reliability of rock core simulated formation conditions.
Owner:PEKING UNIV

Purified cbd and cbda, and methods, compositions and products employing cbd or cbda

A purified cannabidiol (CBD) extract and / or cannabidiolic acid (CBDA) extract is isolated from industrial hemp and comprises less than 0.5 wt % organic impurities as measured by HPLC and 1H NMR spectroscopy exhibits no detectable peak at 4.07 ppm as measured by 1H NMR spectroscopy. The CBD and / or CBDA extract is in crystalline form. The CBD extract exhibits a melting point as measured by differential scanning calorimetry (DSC) of 69-70° C. Dry powder compositions comprise such extracts. Additional dry powder compositions comprise polyvinylpyrrolidone and an amorphous CBD extract. An adduct comprises CBD and / or CBDA bonded to a paramagnetic trivalent lanthanide (III) metal chelate.
Owner:COLORADO CAN LLC

Inversion method of nuclear magnetic resonance two-dimensional spectrum

The invention relates to an inversion method of nuclear magnetic resonance two-dimensional spectrum. The method includes firstly, extracting and estimating noise, namely extracting noise in CPMG (Carr-Purcell-Meiboom-Gill) echo string of acquired data and estimating standard deviation of the noise; secondly, compressing data, namely generating an inversion kernel and performing truncated singular value decomposition and reconstruction by sequence of a nuclear matrix to complete data compression; and thirdly, fitting the data, namely subjecting fitting problem of the compressed data to regularization, performing iterative solution to regularization factors and inversion spectrum by newton method with non-exact one-dimensional search so as to obtain the inversion spectrum. Execution efficiency of two-dimensional inversion algorithm and resolution of two-dimensional spectrum are increased greatly, and the inversion method is well robust.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Method for accurately measuring shale porosity by adopting low-field nuclear magnetic resonance

The invention discloses a method for accurately measuring shale porosity by adopting the low-field nuclear magnetic resonance. The method comprises the following steps: as for a saturated water column-shaped shale sample, conducting nuclear magnetic porosity measurement in different echo time and waiting time; conducting helium porosity measurement; comprehensively comparing and analyzing the porosity results of the two methods; optimizing the optimal echo time and waiting time for testing to facilitate the accurate testing of follow-up samples. The method solves the problems of how to set reasonable parameters to measure the shale porosity by adopting the low-field nuclear magnetic resonance, and solves the problem that in the actual testing, the nuclear magnetic porosity obtained in different echo time and waiting time is in great disparity, and the comparability of the nuclear magnetic porosity and the helium porosity is relatively poor; compared with the prior art, by adopting the method, the shale porosity can be quickly and nondestructively measured, the accuracy and precision of the shale porosity measurement can be improved, and the operation is convenient.
Owner:CHINA UNIV OF GEOSCIENCES (BEIJING)

Method for measuring alkali metal atomic polarizability of nuclear magnetic resonance gyro in real time

The invention provides a method for measuring alkali metal atomic polarizability of a nuclear magnetic resonance gyro in real time and belongs to the field of atomic physics. The method includes: measuring alkali metal atomic densities of an atomic pool at different temperatures, measuring atomic nuclear magnetic resonance frequency of inert gas caused by polarization of alkali metal atoms, and thus acquiring polarizability of the alkali metal atoms in the atomic pool without changing the optical path structure of the nuclear magnetic resonance gyro and the magnetic field environment; building a three-dimensional model of changes in nuclear magnetic resonance frequency of the inert gas in the atomic pool along with temperature and the alkali metal atomic polarizability, measuring the frequency shift of atomic NMR (nuclear magnetic resonance) of the inert gas at any temperature point while the nuclear magnetic resonance frequency normally runs, and thus calculating the polarizability of the alkali metal atoms in the atomic pool in real time. The method has the advantages that the method is simple, no influence is caused to the optical path structure of the nuclear magnetic resonance gyro and the method is of great significance to improving the performance of the nuclear magnetic resonance gyro.
Owner:NAT UNIV OF DEFENSE TECH

Nmr method of detecting precipitants in a hydrocarbon stream

A method for detecting the presence of precipitants in a hydrocarbon stream, the method comprising introducing at least a portion of the hydrocarbon stream into a measurement chamber of an NMR measuring device, assaying the fluids in the chamber with proton nuclear magnetic resonance to obtain NMR signals, and processing the NMR signals to detect the formation of precipitants in the hydrocarbon stream. The method may be carried out at first and second locations, and NMR signals obtained at the two locations compared to detect precipitation of precipitant between the two locations. A method of monitoring the water content of a hydrocarbon stream in a flowline comprising introducing at least a portion of the hydrocarbon stream into an NMR measuring device, measuring a baseline NMR water signal of the hydrocarbon stream and comparing subsequent NMR water signals with the baseline NMR water signal to detect changes in the water content of the hydrocarbon stream.
Owner:RICE UNIV +1

On-line testing device for high temperature and high pressure rock physical property and percolation mechanism nuclear magnetic resonance

The invention relates to an on-line testing device for high temperature and high pressure rock physical property and percolation mechanism nuclear magnetic resonance. The on-line testing device comprises a nuclear magnetic resonance on-line testing module, a rock fluid displacement module (comprising core holder compatible with nuclear magnetic resonance tests) and a computer control and data processing module, a nuclear magnetic resonance testing system and a rock fluid displacement system are combined into a whole through computer control, formation temperature and pressure are simulated, rock displacement tests are carried out under high temperature and high pressure conditions, and real-time nuclear magnetic resonance signals are measured on line to obtain rich rock parameters (porosity, permeability, reservoir forming critical pressure, wettability and the like). The on-line testing device serves as a device for oil gas reservoir forming geological research and oil gas target assessment, and the purposes of analyzing core physical properties and percolation mechanism from micro perspective are achieved.
Owner:PEKING UNIV

Shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance

The invention discloses a shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance. The shale gas reservoir pore structure quantitative calculation methodcomprises the following steps: collecting cores; drilling parallel samples, carrying out oil and water self-adsorption nuclear magnetic resonance experiment measurement; contrastively analyzing the difference of a parallel sample oil and water nuclear magnetic resonance T2 spectrum, and determining the distribution of different wetting pore types on the nuclear magnetic resonance T2 spectrum; obtaining a shale gas reservoir full-pore distribution curve according to high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; furthermore, obtaining an intersection plate of pore diameters and corresponding T2 time; and according to the intersection plate of different pore types of pore diameters and corresponding T2 time, establishing a quantitative calculation model of the pore diameters according to the pore types. The method has the advantages that a shale gas reservoir pore full-pore distribution curve can be quantitatively calculated through the technology;simultaneously, the nuclear magnetism measurement is quick, simple and loss-free, and is higher in practicability by compared with high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; and compared with a conventional method, the calculation result is more accurate.
Owner:SOUTHWEST PETROLEUM UNIV

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.
Owner:TRIAD NAT SECURITY LLC

Method for obtaining nuclear magnetic resonance two-dimensional J-resolved spectroscopy in non-uniform magnetic field

The invention discloses a method for obtaining nuclear magnetic resonance two-dimensional J-resolved spectroscopy in a non-uniform magnetic field, and relates to a nuclear magnetic resonance spectrometer. The method comprises the steps that a piece of one-dimensional spectroscopy is sampled through a general one-dimensional pulse sequence, the line width of a spectral line is obtained, the basis is provided for spectral width parameter setting, and the line width reflects the magnetic field environment uniformity condition; (2) an intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence which is compiled in advance is led to the nuclear magnetic resonance spectrometer; (3) an intermolecular single-quantum coherent signal selection module, an indirect dimension evolution period t1 module, an indirect dimension evolution period t2 module and a signal sampling period t3 module of the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence are opened, and experiment parameters of the modules of the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence are set; (4) the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence with the experiment parameters set in the step (3) is executed, and data sampling is carried out; (5) after data sampling is accomplished, related data post-processing is carried out to obtain the high-resolution two-dimensional J-resolved spectroscopy free from influence of the non-uniform magnetic field.
Owner:XIAMEN UNIV

Capillary toroid cavity detector for high pressure NMR

A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

System and method for measuring unfrozen water content in frozen soil by pulse nuclear magnetic resonance (NMR)

The invention relates to a system and a method for measuring unfrozen water content in frozen soil by pulse NMR, aiming at the problems that, in the measurement of unfrozen water content, measuring procedures are complex, operators need relatively high electromagnetism theoretical basis, and operations are difficult; a plurality of test pieces are needed under multi-temperature and multi-pressure working conditions, and the test pieces are exposed in normal temperature to influence measurement precision. The system is characterized in that a soil testing tube is disposed in a ceramic tube; a temperature signal input end of a temperature sensor is disposed in the soil testing tube; a temperature signal output end of the temperature sensor is connected to the temperature signal input end of a temperature control valve. The method is characterized in that different relaxation time of solid water, combined water and free water in attenuation process are stipulated when free attenuation signals of magnetization intensity are fitted, so that the magnetic field intensity value corresponding to the free attenuation signals of magnetization intensity during the relaxation time can be obtained. The system and method of the present invention measure the unfrozen water content in frozen soil.
Owner:HARBIN INST OF TECH

Nuclear magnetic resonance spectroscopy using light with orbital angular momemtum

InactiveUS20100327866A1Less noisyHigh resolutionLaser detailsAnalysis using optical pumpingTwo-dimensional nuclear magnetic resonance spectroscopySpectroscopy
The present invention relates to a device capable of producing a high resolution chemical analysis of a sample, such as fluid, based upon nuclear magnetic resonance (NMR) spectroscopy, where the nuclear magnetic polarizations of the sample are generated by sequentially illuminating the sample with a focused beam of light carrying angular orbital angular momentum (OAM) and possibly momentum (spin). Unlike in usual NMR used for magnetic nuclear resonance imaging (MRI) or spectroscopy, the invention does not make use of a strong magnet.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Method for measuring coal sample methane adsorbing capacity through low-field nuclear magnetic resonance

The invention discloses a method for measuring coal sample methane adsorbing capacity through low-field nuclear magnetic resonance. According to the method, selected measuring parameters are used for carrying out low-field nuclear magnetic resonance measurement on powder coal samples after methane adsorption balance under set pressure, the nuclear magnetism T2 spectrum of methane in the coal samples is obtained, then signal amplitude integrals of the first spectrum peak (in the range of 0.1-4ms spectrum) on the left of the T2 spectrum are substituted to a hydrogen content index reticle equation of methane under the standard condition built through an experiment, the standard condition size of methane adsorbed by the coal samples is obtained, and therefore the methane adsorbing capacity of unit mass of coal under the set pressure is obtained. According to the method, the scale relation of methane mass and nuclear magnetic resonance 1H nuclear signals is built, the quantitative assay of methane adsorbing capacity under the same temperature and different pressures is achieved, and the novel method can be used for measuring coal methane absorbing capacity in a real-time, home-position and dynamic mode.
Owner:CHINA UNIV OF GEOSCIENCES (BEIJING)

Low-permeability sandstone reservoir pore structure quantitative inversion method based on nuclear magnetic resonance

The invention discloses a low-permeability sandstone reservoir pore structure quantitative inversion method based on nuclear magnetic resonance. The method comprises the following steps: I, selecting a basic sample; II, classifying the type of a pore structure; III, establishing a well logging chart for identifying the pore structure; IV, establishing a pore throat distribution inversion formula according to the type of the pore structure; V, verifying the accuracy of the formula; VI, identifying the type of the pore structure of a shaft section by utilizing the well logging chart; VII, quantitatively inverting the distribution of free fluid pore throats by utilizing a nuclear magnetic resonance well logging T2 spectrum. The method has the following beneficial effects: a reliable method and technology are provided for quantitatively evaluating the pore structure, and the research concept of the current method can be broken through. The continuous free fluid pore throat distribution can be inverted by virtue of the nuclear magnetic resonance well logging, so that direct evidence is provided for evaluating the effectiveness of the low-permeability sandstone reservoir, application of the well logging information in the quantitative inversion of the micro pore structure of the reservoir is favorably explored, and the application and development of the nuclear magnetic well logging technology can be promoted.
Owner:SOUTHWEST PETROLEUM UNIV

Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer

The invention discloses a nuclear magnetic resonance (NMR) device based on a laser atomic magnetometer, and the NMR device comprises a cesium atom vapor bubble, a magnetic shielding bushing which is sleeved on the cesium atom vapor bubble, three groups of Helmholtz coils which are arranged inside the magnetic shielding bushing, a polarization device which is used for polarizing cesium atoms inside the cesium atom vapor bubble, a laser transmitting device which is used for transmitting detection laser to the cesium atom vapor bubble, a detection device which is used for detecting an NMR signal of the detection laser penetrating the cesium atom vapor bubble and a pneumatic sample feeding device which is used for pre-polarizing a sample to be detected and can place the pre-polarized sample on the cesium atom vapor bubble. The invention also discloses a measurement method of an NMR based on the laser atomic magnetometer. The device and the method are high in detection sensitivity, free from needing low-temperature refrigeration, low in running cost and lower in working temperature.
Owner:WUHAN INST OF PHYSICS & MATHEMATICS CHINESE ACADEMY OF SCI

Nuclear magnetic resonance evaluation using independent component analysis (ICA)-based blind source separation

Disclosed is a non-lineal statistical independent component (ICA) analysis methodology for calculating T2 or T1 distributions of nuclear magnetic resonance logs. In one aspect, the invention employs a classical blind source separation (BSS) approach with the input data (T2 or T1 distributions) being considered not only horizontally (in relaxation time units), but also vertically (in depth). The statistical variations are used for separating the principal independent components and their corresponding weighting matrix. The result of such ICA based BSS is an efficient separation of T2 components correlative to the presence of particular conditions (e.g., clay bound water, heavy oil, capillary bound water, free water, mud filtrate (water and oil), and noise). Individual saturation of estimated fluids can be calculated from the weighting matrix generated in accordance with the invention. In accordance with a further feature of the invention, it is contemplated that independent component analysis techniques may be applied to the underlying time domain data prior to its transformation to a T2 distribution. This advantageously results in “de-noising” of the signal, leading to more precise and accurate results following analysis of the T2 distribution.
Owner:BAKER HUGHES INC

Magnetic resonance spectroscopy with real-time correction of motion and frequency drift, and real-time shimming

This invention relates to localized magnetic resonance spectroscopy (MRS) and to magnetic resonance spectroscopic imaging (MRSI) of the proton NMR signal, specifically to a magnetic resonance spectroscopy (MRS) method to measure a single volume of interest and to a magnetic resonance spectroscopic imaging method with at least one spectral dimension and up to three spatial dimensions. MRS and MRSI are sensitive to movement of the object to be imaged and to frequency drifts during the scan that may arise from scanner instability, field drift, respiration, and shim coil heating due to gradient switching. Inter-scan and intra-scan movement leads to line broadening and changes in spectral pattern secondary to changes in partial volume effects in localized MRS. In MRSI movement leads to ghosting artifacts across the entire spectroscopic image. For both MRS an MRSI movement changes the magnetic field inhomogeneity, which requires dynamic reshimming. Frequency drifts in MRS and MRSI degrade water suppression, prevent coherent signal averaging over the time course of the scan and interfere with gradient encoding, thus leading to a loss in localization. It is desirable to measure object movement and frequency drift and to correct object motion and frequency drift without interfering with the MRS and MRSI data acquisition.
Owner:POSSE STEFAN

Systems and methods using nuclear magnetic resonance (NMR) spectroscopy to evaluate pain and degenerative properties of tissue

NMR spectroscopy is performed on intervertebral disc tissue. Extent of degeneration is determined based on the NMR spectroscopy. Correlation between NMR spectral regions and at least one of tissue degeneration and pain are made. Accordingly, NMR spectroscopy is used to determine location and / or extent of at least one of degeneration or pain associated with a region of tissue, such as for example in particular disc degeneration, or discogenic pain. NMR spectral peak ratios, such as between N-Acetyl / cho and cho / carb, are readily acquired and analyzed to predict degree of tissue degeneration and / or pain for: tissue samples using HR-MAS spectroscopy; and larger portions of anatomy such as joint segments such as a spine, using clinical 3 T MRI systems with surface head or knee coils; and tissue regions such as discs within spines of living patients using 3 T MRI systems with a surface spine coil, thus providing a completely non-invasive diagnostic toolset and method to image and localize degeneration and / or pain.
Owner:RGT UNIV OF CALIFORNIA

Method for obtaining nuclear magnetic resonance two-dimension spin echo related spectrum under uneven magnetic field

ActiveCN103744042AOvercoming the influence of uneven magnetic fieldMagnetic measurementsLine widthPulse sequence
A method for obtaining a nuclear magnetic resonance two-dimension spin echo related spectrum under an uneven magnetic field relates to a nuclear magnetic resonance wave spectrum detection method and comprises the steps of using a normal one-dimension pulse sequence to sample a one-dimension spectrum, obtaining the line width of spectral lines, and providing a basis for spectrum width parameter setting, wherein the line width value also reflects the uniformity condition of a magnetic field; introducing well precompiled two-dimension spin echo related spectrum pulse sequences onto a nuclear magnetic resonance spectrometer; opening a multi-quantum coherent signal selection module, a three-dimension sampled indirect dimension evolution period t1 combination and indirect dimension evolution period t2 combination and an echo delay module among the two-dimension spin echo related spectrum pulse sequences; setting each experiment parameter of the two-dimension spin echo related spectrum pulse sequences; executing the two-dimension spin echo related spectrum pulse sequences, of which the experiment parameters are set, for data sampling; after the data sampling is finished, performing related data postprocessing to obtain the two-dimension spin echo related spectrum uninfluenced by the uneven magnetic field. The method has no need of shimming operation and is simple, convenient and effective.
Owner:XIAMEN UNIV

Method for simultaneously quantitatively analyzing water and oil in oily sludge through low-field NMR (nuclear magnetic resonance)

The invention relates to a method for simultaneously quantitatively analyzing water and oil in oily sludge through low-field NMR (nuclear magnetic resonance). The method comprises steps as follows: deionized water and crude oil are taken as standard samples to perform low-field NMR measurement, and calibration curves of water and oil are established; a to-be-measured sample which is uniformly stirred is divided into two parts and put in containers respectively, a reagent capable of realizing signal partition of oil and water is added to one part, and the mixture is uniformly stirred to form a sample a; the other part keeps unchanged and is taken as a sample b; the two samples are subjected to low-field NMR measurement to obtain an echo attenuation curve, and transverse relaxation time T2 curves of the two samples are obtained through inversion with a joint iterative correction algorithm; the transverse relaxation time T2 curves of the two samples are subjected to area integration and calculation to obtain integral areas of a water peak and an oil peak, and the calibration curves of water and oil are substituted to calculate water content and oil content of the to-be-measured sample b. The method can be suitable for measurement of content of water and oil in various kinds of oily sludge, and the measurement result is high in accuracy and good in repeatability and consumes short time.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

A method for identifying the quality of edible oil by combining nuclear magnetic resonance with pattern recognition

The invention discloses a method for detecting the quality of edible oil with nuclear magnetic resonance combined with pattern recognition, belonging to the field of food detection methods. This method first collects NMR signals under the same parameters for different quality oil samples, and then performs segmental integration on the spectrum, and after normalization and standardization of the obtained data matrix, pattern discrimination analysis is carried out; and the same quality oil Repeatability tests are carried out on similar samples; an oil quality test database is established based on the test data of different quality oils, and analysis and test standards are formed; finally, the quality of unknown oil samples is identified through the test data in the database. It is suitable for the identification and detection of genuine edible oil and inferior gutter oil or adulterated edible oil, and can identify the type of edible oil. The method of the invention has the advantages of high accuracy, good repeatability, quickness and economy, etc., and can provide reliable information for the identification of the quality of various edible oils and the identification of low-priced edible oils posing as high-priced edible oils.
Owner:王士桥
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products