Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

170 results about "Spectral dimension" patented technology

Gastrointestinal tumor microscopic hyper-spectral image processing method based on convolutional neural network

The invention discloses a gastrointestinal tumor microscopic hyper-spectral image processing method based on a convolutional neural network, comprising the following steps: reducing and de-noising the spectral dimension of an acquired gastrointestinal tissue hyper-spectral training image; constructing a convolutional neural network structure; and inputting obtained hyper-spectral data principal components (namely, a plurality of 2D gray images, which are equivalent to a plurality of feature maps of an input layer) as input images into the constructed convolutional neural network structure using a batch processing method, and by taking a cross entropy function as a loss function and using an error back propagation algorithm, training the parameters in the convolutional neural network and the parameters of a logistic regression layer according to the average loss function in a training batch until the network converges. According to the invention, the dimension of a hyper-spectral image is reduced using a principal component analysis method, enough spectral information and spatial texture information are retained, the complexity of the algorithm is reduced greatly, and the efficiency of the algorithm is improved.
Owner:SHANDONG UNIV

Hyperspectral image classification method based on convolutional neural network and spatial spectrum information fusion

The invention discloses a hyperspectral image classification method based on a convolutional neural network and spatial spectrum information fusion. The method comprises the steps that S1 X and Y axiscoordinates of each pixel point of a hyperspectral image are extracted as spatial information, and the spatial information and spectral information are combined as the feature information of a sample; S2 training set and test set data are randomly divided; S3 training set samples including the spatial information and the spectral information are put into a one-dimensional convolutional neural network to train a classification model; and S4 the training set samples including the spatial information and the spectral information are put into the classification model for classification prediction. The convolutional neural network uses convolution kernels of different sizes to carry out convolution operation, which can effectively extract feature information with different resolutions in the spectral dimension of a hyperspectrum. In addition, the spectral dimension information and the spatial dimension information are input into the neural network to learn simultaneously. The feature of dual high resolutions of the hyperspectrum is fully used. The algorithm structure is simple, and the classification accuracy can be significantly improved.
Owner:GUANGDONG INST OF INTELLIGENT MFG

A hyperspectral image super-resolution restoration method based on a 3D convolutional neural network

InactiveCN109903255AReduce the number of featuresSolve the problem of excessive accumulation of feature numbersImage enhancementGeometric image transformationRestoration methodHigh resolution image
The invention discloses a hyperspectral image super-resolution restoration method based on a 3D convolutional neural network. According to the technical scheme, the 3D residual dense network is characterized by comprising 3D convolution kernel to convolve the hyperspectral image spectral dimension and 3D sub-pixel recombination to enlarge the image and reconstruct the high-resolution image part, and unifying the two parts in the deep convolutional neural network framework 3D-RDN; hierarchical characteristics of the convolutional layer are fully utilized through structures such as residual dense blocks, and super-resolution restoration of the hyperspectral image is achieved. At present, when an existing method based on deep learning is applied to a hyperspectral image, the characteristics of the hyperspectral image are not fully considered, and therefore it is difficult to effectively utilize rich spectral dimension information of the hyperspectral image to reconstruct a high-resolutionimage. According to the method, all spatial spectrum information of the hyperspectral image is fully utilized, efficient super-resolution restoration is achieved, and the PSNR value is superior to that of an existing method.
Owner:BEIJING UNIV OF TECH

Hyperspectral image classification method based on deep learning space-spectrum joint network

ActiveCN111914907ARich discriminative featuresDiscriminant features fineCharacter and pattern recognitionNeural architecturesDimensionality reductionTerm memory
The invention discloses a hyperspectral image classification method based on a deep learning space-spectrum joint network, and the method comprises the steps: firstly carrying out the data partitioning of an original hyperspectral image, and then training the deep learning space-spectrum joint network through a small amount of label data; simultaneously carrying out spectral dimension feature extraction processing on the input hyperspectral original image by a bidirectional long-short-term memory model with an attention mechanism and a 1D hole convolutional neural network to obtain a final spectral feature map; performing data normalization processing on an input image, performing PCA dimension reduction, extracting input features, sending the input features into a multi-scale multi-levelfilter convolutional network to extract spatial features, and performing global average pooling layer processing to obtain a final spatial feature map; and finally, carrying out classification by combining the trained network parameters. According to the method, spectral dimension features and spatial features are processed separately, richer and more effective spectral feature maps and richer feature expressions can be obtained, and the classification precision is further improved.
Owner:HOHAI UNIV

Magnetic resonance spectroscopy with real-time correction of motion and frequency drift, and real-time shimming

This invention relates to localized magnetic resonance spectroscopy (MRS) and to magnetic resonance spectroscopic imaging (MRSI) of the proton NMR signal, specifically to a magnetic resonance spectroscopy (MRS) method to measure a single volume of interest and to a magnetic resonance spectroscopic imaging method with at least one spectral dimension and up to three spatial dimensions. MRS and MRSI are sensitive to movement of the object to be imaged and to frequency drifts during the scan that may arise from scanner instability, field drift, respiration, and shim coil heating due to gradient switching. Inter-scan and intra-scan movement leads to line broadening and changes in spectral pattern secondary to changes in partial volume effects in localized MRS. In MRSI movement leads to ghosting artifacts across the entire spectroscopic image. For both MRS an MRSI movement changes the magnetic field inhomogeneity, which requires dynamic reshimming. Frequency drifts in MRS and MRSI degrade water suppression, prevent coherent signal averaging over the time course of the scan and interfere with gradient encoding, thus leading to a loss in localization. It is desirable to measure object movement and frequency drift and to correct object motion and frequency drift without interfering with the MRS and MRSI data acquisition.
Owner:POSSE STEFAN

Hyperspectral remote sensing data classification method based on ensemble learning

InactiveCN104021396AReduce the impact of classification accuracyGood serviceScene recognitionSensing dataHyperspectral data classification
The invention discloses a hyperspectral remote sensing data classification method based on ensemble learning, belonging to the technical field of spectral data classification and aiming at solving the problem of low data classification precision caused by the fact that an existing hyperspectral data classification method is used for classifying data from the aspect of spectral dimensions. The hyperspectral remote sensing data classification method comprises the following steps: firstly, reading hyperspectral remote sensing data to obtain spectral characteristics and spatial characteristics of hyperspectral remote sensing data; integrating the spectral characteristics and the spatial characteristics to obtain a multiple characteristic set; determining a marking sample and selecting training samples and testing samples according to the multiple characteristic set; designing an Adaboost integration and classification frame of characteristic difference based on an ensemble learning method, and training with the training sample to obtain F weak classifiers; and classifying the testing samples by the F weak classifiers. The hyperspectral remote sensing data classification method is used for classifying hyperspectral remote sensing data.
Owner:HARBIN INST OF TECH

Hyperspectral image classification method based on neighborhood information deep learning

ActiveCN107798348AEliminate the "pitting" effectImprove continuityCharacter and pattern recognitionNeural architecturesHyperspectral data classificationSpectral dimension
The invention discloses a hyperspectral data classification method based on neighborhood information deep learning. The method comprises the steps of randomly dividing hyperspectral image data into atraining set and a test set; taking class attribution of the training set samples in the n * n neighborhood of each pixel point and the score of a front one main component of all the samples in the n* n neighborhood as the spatial information of each sample, putting the spectral information and the spatial information of each sample of the training set into a convolution neural network for modeltraining, putting the spectrum information and the space information of each sample of the test set into the model for classification result prediction. According to the method, the class attributionof the training set of each pixel point in the n * n neighborhood in a picture and the main component distribution of all the samples in the neighborhood serve as spatial information, spatial featureextraction is carried out on the neighborhood image through a two-dimensional convolution neural network, and fusion with the spectral dimension information is then conducted. The classification precision can be remarkably improved. The method has a good application prospect in the field of hyperspectral data classification.
Owner:INST OF INTELLIGENT MFG GUANGDONG ACAD OF SCI

Remote sensing image restoration method combining wave-band clustering with sparse representation

ActiveCN103020912ACorrecting Poor Recovery SituationsAvoid insufficientImage enhancementRelevant informationImage resolution
The invention provides a remote sensing image restoration method combining wave-band clustering with sparse representation. In order to improve the spatial resolution of a hyperspectral remote sensing image, according to the characteristics of rich spectral dimension information of the hyperspectral image and different noise strength of different wave bands, a multiband image restoration model is built, the wave bands are mutually restrained and complemented by the aid of high similarity of the wave bands and redundant information, and finally, the high-quality hyperspectral image is obtained. Firstly, the wave bands of the hyperspectral image are clustered, and a large number of wave bands are divided into a small number of categories with large relevant information difference. Secondly, a cluster of wave bands in the same category is built into an integral variation training multiband dictionary by the compressive sensing theory, and the dictionary is used for completing image restoration. Relevancy of a plurality of wave bands is sufficiently used for restoring target images, the spectral characteristics of the target images are kept, and restoration results have higher spatial information and spectral information keeping performance.
Owner:WUHAN UNIV

A hyperspectral image inpainting method based on E-3DTV regularity

A hyperspectral image inpainting method based on E-3DTV regularity is provided. The method comprises the steps of expanding the original three-dimensional hyperspectral data with noise into matrix along the spectral dimension, and initializing the matrix representation of the noise term and the hyperspectral data to be repaired, and other model variables and parameters under the ADMM framework; performing differential operation on the hyperspectral data to be repaired along horizontal, vertical and spectral dimensions to obtain three gradient maps in different directions, which are expanded into matrices along the spectral dimensions; decomposing the gradient graph matrices in three directions by low rank UV, and constraining the basis matrices of the gradient graph by sparsity to obtain E-3DTV regularity; adding the E-3DTV regularity to the data to be repaired, writing out the optimization model, using the ADMM framework to solve iteratively; obtaining the restoration image and noisewhen the iteration is stable. The invention performs denoising and compression reconstruction on the hyperspectral image data, and improves the enhancement of the traditional 3DTV so as to give consideration to the structural correlation and sparsity of the gradient image, thereby overcoming the defect that the traditional 3DTV can only depict the sparsity of the gradient image and ignores the correlation.
Owner:XI AN JIAOTONG UNIV

Light path structure of scanning and imaging spectrometer

The invention relates to a light path structure of a scanning and imaging spectrometer, comprising a scanning mirror (1), a diaphragm (2), a telescope objective (3), a collimator objective (5), a raster (6) and a focusing objective (7). The scanning mirror (1) is used for reflecting incident light from a target, the diaphragm (2) is used for selecting light in a certain FOV (Field Of View) to enter the spectrometer, the telescope objective (3) is used for focusing light passing through the diaphragm in a silt (4), the collimator objective (5) is used for reflecting light passing through the silt to the raster (6) which is used for splitting light, and the focusing objective (7) is used for focusing the split light on the photosurface of a detector (8) for spectroscopic imaging. Spectral data in a two-dimensional space can be acquired through the scanning of the scanning mirror (1) on spectral dimensions. The spectrometer adopts all-reflective type optical elements, and all the reflecting elements are respectively coated with a high-reflectivity film. The light path structure is structurally characterized in that the space is shared by a telescopic imaging light path and a spectroscopic imaging light path, an off-axis angle between the optical elements is reduced on a basis of keeping the original system size and the spectral resolution and the imaging resolution of the spectrometer are greatly improved.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

LCTF-based full-polarization hyperspectral compressed sensing imaging system and method

The invention discloses an LCTF-based full-polarization hyperspectral compressed sensing imaging system and an LCTF-based full-polarization hyperspectral compressed sensing imaging method. The LCTF-based full-polarization hyperspectral compressed sensing imaging system comprises a linear retarder, a liquid crystal tunable optical filter, a digital micro mirror array and an area array detector, wherein a Mueller matrix of the linear retarder is designed such that absolute values of first two elements of each column are different; the linear retarder and the liquid crystal tunable optical filter realize polarization dimension compression jointly; the liquid crystal tunable optical filter switches L different center wavelengths, outputs images in each band, and realizes spectral dimension compression; the digital micro mirror array encodes the images of each band, and realizes spatial dimension coding compression; and an original image is detected by means of the area array detector after sequentially passing through the linear retarder, the liquid crystal tunable optical filter and the digital micro mirror array, so as to obtain an image containing full Stokes parameters. By applying the LCTF-based full-polarization hyperspectral compressed sensing imaging system and the LCTF-based full-polarization hyperspectral compressed sensing imaging method, compression reconstruction ofthe full Stokes parameters of the original image can be realized.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Hyperspectral image target detection method and system based on spectral dimension and spatial cooperation neighborhood attention

The invention discloses a hyperspectral image target detection method and system based on spectral dimension and spatial cooperation neighborhood attention. The method comprises the following steps: generating a 3D cube set; respectively taking a bidirectional recurrent neural network of spectral dimension neighborhood attention mechanism based on target identification feature self-adaptive extraction and convolutional neural network of three-dimensional neighborhood attention mechanism based on spatial structure self-adaptive extraction as spectral branch and spatial branch to respectively extract spectral features and spatial features of hyperspectral image for cascade generation; forming spatial-spectral cooperation characteristics to obtain an optimal network model; and obtaining a target detection result of the network to the data set through an activation function according to the spatial-spectral cooperation characteristics. through a neighborhood attention mechanism of spectrumdimension and space cooperation, the neural network can adaptively learn and acquire space-spectrum cooperation features, the interdependence relationship between discriminative spectrum features andsimilar space features is better mined, the generalization ability is high, and high target detection precision can be obtained.
Owner:NANJING UNIV OF SCI & TECH

Hyperspectral batch-type nondestructive detection method and system for quality of agricultural and livestock products

ActiveCN105973839ASolve the bottleneck problem of detecting speed limitDetection speedMaterial analysis by optical meansFiberEngineering
The invention discloses a hyperspectral batch-type nondestructive detection method and system for quality of agricultural and livestock products. The method comprises: presetting the number of single hyperspectral batch-type samples, determining the number of coupling fibers, and further determining the size and arrangement of the fibers; establishing a correspondence of each fiber with spatial-dimension and spectral-dimension photosensitive regions on an area array detector, and establishing a correspondence of a fiber corresponding detection sample with a near-infrared spectral signal responsively acquired by the assigned photosensitive region of the detector; establishing a quality detection model using quality indexes of the batch-type detection samples and near-infrared spectrum acquired by the detector; subjecting samples to be detected to batch feeding, acquiring near-infrared spectrums of the samples, substituting to the quality detection model, outputting the quality indexes of the samples to be detected respectively to finish hyperspectral batch-type rapid destructive detection for the quality of agricultural and livestock products. The detection speed limit problem and model transfer bottleneck problems can be broken through for the detection of the quality of agricultural and livestock products.
Owner:上海陆华光电科技有限公司

Clustered adaptive window based hyperspectral image abnormality detection method

The invention provides a clustered adaptive window based hyperspectral image abnormality detection method which belongs to the hyperspectral image processing field with the object of solving the problem with the consistence of the hyperspectral image background restricted by an existing background model structuring method. The steps of the method are as follows: conducting analysis on the main components of spectral dimensions of hyperspectral image and generating spectral subspace; generating adaptive windows for each to-be-detected pixel wherein each of the generated adaptive window is a binary matrix whose center is superposed with the to-be-detected pixel and the pixel in the matrix represented by one indicates the pixel as one in the homogeneous background area of the hyperspectral image while the pixel in the matrix represented by zero indicates the pixel as one in the non-homogeneous background area of the hyperspectral image; using the analysis result of the main components and an elliptical contour model to estimate the background logarithmic likelihood of the adaptive window to detect the abnormal image elements and generate a preliminary matrix for detection result; and using the morphological filtering for post-treatment and obtaining the final result of the detection matrix. The invention is used to detect the abnormity of a hyperspectral remote sensing image.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products