Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

195 results about "Stokes parameters" patented technology

The Stokes parameters are a set of values that describe the polarization state of electromagnetic radiation. They were defined by George Gabriel Stokes in 1852, as a mathematically convenient alternative to the more common description of incoherent or partially polarized radiation in terms of its total intensity (I), (fractional) degree of polarization (p), and the shape parameters of the polarization ellipse. The effect of an optical system on the polarization of light can be determined by constructing the Stokes vector for the input light and applying Mueller calculus, to obtain the Stokes vector of the light leaving the system. The original Stokes paper was discovered independently by Francis Perrin in 1942 and by Subrahamanyan Chandrasekhar in 1947, who named it as the Stokes parameters.

High-resolution polarization-sensitive imaging sensors

An apparatus and method to determine the surface orientation of objects in a field of view is provided by utilizing an array of polarizers and a means for microscanning an image of the objects over the polarizer array. In the preferred embodiment, a sequence of three image frames is captured using a focal plane array of photodetectors. Between frames the image is displaced by a distance equal to a polarizer array element. By combining the signals recorded in the three image frames, the intensity, percent of linear polarization, and angle of the polarization plane can be determined for radiation from each point on the object. The intensity can be used to determine the temperature at a corresponding point on the object. The percent of linear polarization and angle of the polarization plane can be used to determine the surface orientation at a corresponding point on the object. Surface orientation data from different points on the object can be combined to determine the object's shape and pose. Images of the Stokes parameters can be captured and viewed at video frequency. In an alternative embodiment, multi-spectral images can be captured for objects with point source resolution. Potential applications are in robotic vision, machine vision, computer vision, remote sensing, and infrared missile seekers. Other applications are detection and recognition of objects, automatic object recognition, and surveillance. This method of sensing is potentially useful in autonomous navigation and obstacle avoidance systems in automobiles and automated manufacturing and quality control systems.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Mueller matrix testing device based on rotatable wave plate and method

InactiveCN102539119AThe parameter value range is looseSimple and easy to implementTesting optical propertiesEngineeringPolarizer
The invention relates to a testing device for realizing Mueller matrix of an optical device based on a rotatable wave plate and a method. A testing system consists of a laser device, a polarization generator, a tested device, a polarization analyzer, a voltage controller and a computer. Light generated by the laser device enters the polarization generator, the polarization generator consists of a polarizer and the rotatable wave plate, the rotation angle of the wave plate is larger than 180 degrees, rotation of the wave plate is controlled by voltage, and the polarization generator generates different polarization state outputs under different control voltages. Light outputted by the polarization generator enters the tested device, light outputted by the tested device directly enters the polarization analyzer, and the polarization analyzer detects corresponding output polarization states of the polarization generator and corresponding Stokes parameters of output polarization states of the tested device when in different control voltages. Afterwards, a linear system equation among detected input and output polarization state parameters and Mueller matrix parameters of the tested device is built, the computer solves the system equation, and then 16 parameters of the Mueller matrix can be solved.
Owner:SHANGHAI UNIV

Real-time polarization state and phase measurement method based on pixel polarizing film array

ActiveCN104034426ASolve real-timeSolve technical problems requiring high vibration isolationOptical measurementsLight polarisation measurementPolarizerOptoelectronics
The invention discloses a real-time polarization state and real-time phase measurement method based on a pixel polarizing film array. According to the method, the polarizing film array is integrated with a photosensitive element array, each polarizing film unit of the polarizing film array aligns to each photosensitive unit of the photosensitive element array one by one, the polarizing film array is composed of a plurality of equal-sized subarraies, each subarray comprises a plurality of polarizing film units, and transmission polarization directions of different polarizing film units in the same subarray are different. When polarization states are measured, after first three corresponding stokes parameters of light are obtained according to light intensity value which each pixel corresponds to, the linear polarization degree and the linear polarization angle of each pixel of images are calculated, and when phase positions are measured, laser is divided into object light wave and reference light and then modulated to levogyration circularly polarized light and dextrorotation circularly polarized light which penetrate the polarizing film array to be incident to the photosensitive element array. By means of the real-time polarization state and phase measurement method based on the pixel polarizing film array, light intensity, polarization state information and phase information of a dynamic object can be real-timely measured.
Owner:UNIV OF SCI & TECH OF CHINA

Method for simulating underwater polarization field of wave water surface transmitted light

InactiveCN105181145ARich theoretical knowledgeInnovativeLight polarisation measurementRayleigh scatteringUnderwater light field
The invention relates to a method for simulating an underwater polarization field of wave water surface transmitted light. The method comprises the following steps: firstly, building a polarization model based on Rayleigh scattering sky light, and calculating the polarization of incident sky light; according to different refraction coefficients corresponding to a parallel component and a vertical component of an incident light E vector, obtaining a Mueller matrix of a refraction process of a calm water surface; secondly, building a probability distribution model of a wave water surface element gradient, unifying the reference coordinate systems of the incident light and transmitted light, considering the shield effect among wind waves, and obtaining a Mueller matrix of a refraction process of a wave water surface; and finally, combining the Stokes parameter representation method to obtain a polarization field distribution mode of underwater transmitted light. The method can successfully simulate polarization characteristic distribution of underwater transmitted light of different sun positions and takes the influence of wind speed and wind direction on underwater light field polarization characteristic distribution into consideration. Meanwhile, the method can reveal polarization distribution rules of underwater transmitted light in a Snell window.
Owner:BEIHANG UNIV

Real-time pressure sensing method based on fiber bragg grating reflected light polarization parameter

InactiveCN102706494AOvercoming the disadvantages of being unsuitable for small pressure sensingForce measurement by measuring optical property variationGratingPolarizer
The invention discloses a real-time pressure sensing method based on a fiber bragg grating reflected light polarization parameter. Laser transmitted by a tunable laser (1) sequentially passes through an isolator (2), an online polarizer (3), rotational optical fiber connection ports (A and B) and a polarization controller a (4) and then enters a first port (1) and a second port (2) of a circulator (5) and is connected with a sensing fiber bragg grating (6); light reflected by the sensing fiber bragg grating (6) is output from a third port (3) and enters an online polarization detection module (8) through a polarization controller b (7) to output four paths of simulation voltage signals V1, V2, V3 and V4 containing polarization information; four paths of simulation voltage signals are converted into digital signals through an analogue/digital conversion module (9); the digital signals enter a signal processing and displaying module (10) to obtain four stokes parameters S0, S1, S2 and S3 as well as other relevant polarization parameters of reflected light in a polarization state; and the pressure borne by the sensing fiber bragg grating is sensed by monitoring and normalizing a first stokes parameter s1 being equal to S1/S0 value in real time.
Owner:PLA UNIV OF SCI & TECH

Light beam stokes parameter measuring device and measuring method

The invention discloses a light beam stokes parameter measuring device and a measuring method thereof. The polarization measuring device is composed of a beam splitter prism group, a phase retarder array, a polarization analyzer, a photoelectric detector array and a signal processing system, wherein all units of the photoelectric detector array correspond to all units of the phase retarder array one by one. The measuring method is realized through the following steps: adopting the phase retarder array to replace the rotational phase retarder; according to the polarization direction of a to-be-measured light beam, adjusting the direction of a light-transmitting shaft of the polarization analyzer to be parallel to or vertical to the polarization direction of the to-be-measured light; measuring the polarization parameters of the to-be-measured light beam; processing data as per light intensity signals detected by the photoelectric detector array so as to realize the real-time high accuracy measurement of the light beam stokes parameters. Though adopting the method, the stokes parameters of the light beam can be measured in real time, and furthermore, the influences on the measurement accuracy of the light beam polarization state caused by the phase delay error of phase delaying devices, the fast-shaft direction error, the direction error of the light-transmitting shaft of the polarization analyzer and the extinction ratio error are reduced.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products