Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

235 results about "Phase function" patented technology

Phase function (plural phase functions) (astronomy) A function that describes the angular distribution of light reflected from a body when illuminated from a specific direction.

Wave front sensing method and apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Wave Front Sensing Method and Apparatus

A new way of mixing instrumental and digital means is described for the general field of wave front sensing. The present invention describes the use, the definition and the utility of digital operators, called digital wave front operators (DWFO) or digital lenses (DL), specifically designed for the digital processing of wave fronts defined in amplitude and phase. DWFO are of particular interest for correcting undesired wave front deformations induced by instrumental defects or experimental errors. DWFO may be defined using a mathematical model, e.g. a polynomial function, which involves coefficients. The present invention describes automated and semi-automated procedures for calibrating or adjusting the values of these coefficients. These procedures are based on the fitting of mathematical models on reference data extracted from specific regions of a wave front called reference areas, which are characterized by the fact that specimen contributions are a priori known in reference areas. For example, reference areas can be defined in regions where flat surfaces of a specimen produce a constant phase function. The present invention describes also how DWFO can be defined by extracting reference data along one-dimensional (1D) profiles. DWFO can also be defined in order to obtain a flattened representation of non-flat area of a specimen. Several DWFO or DL can be combined, possibly in addition with procedures for calculating numerically the propagation of wave fronts. A DWFO may also be defined experimentally, e.g. by calibration procedures using reference specimens. A method for generating a DWFO by filtering in the Fourier plane is also described. All wave front sensing techniques may benefit from the present invention. The case of a wave front sensor based on digital holography, e.g. a digital holographic microscope (DHM), is described in more details. The use of DWFO improves the performance, in particular speed and precision, and the ease of use of instruments for wave front sensing. The use of DWFO results in instrumental simplifications, costs reductions, and enlarged the field of applications. The present invention defines a new technique for imaging and metrology with a large field of applications in material and life sciences, for research and industrial applications.
Owner:LYNCEE TEC

Method for generating three-dimensional imaging original echoed signals of chromatography synthetic aperture radars

InactiveCN101581779AProcesses that avoid coherent superpositionGenerate high precisionRadio wave reradiation/reflectionRectangular coordinatesSynthetic aperture radar
The invention relates to a method for generating three-dimensional imaging original echoed signals of chromatography synthetic aperture radars, which comprises the following steps: taking a three-dimensional image containing backward plural scattering coefficients of imaging area targets in a rectangular coordinate system OXYZ as the input, carrying out three dimensional fourier transform on the three-dimensional image and converting an image signal to a rectangular coordinate system wave-number domain; converting signals in Kx, Ky and Kz domains to be signals in Kw, Ku and Kv domains according to the method of converting the rectangular coordinate system to a spherical coordinate system; introducing imaging geometrical relationships among same imaging area of chromatography synthetic aperture radars by multiplying three dimensional filter function H2 (Kw, Ku and Kv); introducing a transmission signal form by the multiplication of a two-dimensional inverse Fourier transform function and a reference phase function; and at last, by W direction process and other operations, obtaining the three-dimensional imaging original echoed signals of chromatography synthetic aperture radars, which contains a carrier frequency. The method can be used for generating three-dimensional imaging original echoed signals of side-looking, downward-looking, forward-looking, backward-looking and downward side-looking chromatography synthetic aperture radars, and has high echo generating efficiency and easy realization of modularization.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Method for processing TOPS (Terrain Observation by Progressive Scan)-SAR (Synthetic Aperture Radar)-Raw Data

ActiveUS20100207808A1Improve accuracyAvoiding azimuth aliasing (backfoldingRadio wave reradiation/reflectionEuclidean vectorLandform
Sub-aperture processing is carried out. Within each sub-aperture, range compression and a correction for the target range variation are carried out. Baseband azimuth scaling is used for processing the azimuth signal, wherein a long azimuth reference function and thus a wide azimuth dimension are prevented. The scaling range is not constant and depends on the range, which is not equal to the original range vector. It is calculated such that, in combination with a subsequent derotation step, constant azimuth scanning is achieved for all ranges. The selected derotation function, which is applied in the azimuth time domain, makes it possible for all the targets to be in base band, in this way varying the effective chirp rate. Since the phase is purely quadratic because of the azimuth scaling step, it is thus possible to use an optimal filter which takes account of the effective chirp rate. IFFT results in a focused image, and a final phase function in the time domain allows phase maintenance. Application for SAR, SONAR and seismic raw data processing in the TOPS mode, as well as other modes which make use of the antenna polar diagram being scanned in the azimuth and / or elevation direction.
Owner:DEUTSCHES ZENTRUM FUER LUFT & RAUMFAHRT EV

Improved algorithm based on parameter estimation and compensation of quadratic phase function

The invention discloses an improved algorithm based on parameter estimation and compensation of a quadratic phase function, and belongs to the technical field of signal and information processing. Thealgorithm performs range walk correction on slow time-range frequency domain echo signal considering range walk and Doppler diffusion through Keystone transform, and then eliminates a coupling relation between the range frequency f and the slow time tn in a second-order phase item corresponding to the acceleration in a narrow-band condition; meanwhile, a folding factor corresponding to the blindspeed is searched, a folding factor compensation item is constructed to correct the range walk caused by the blind speed; then the target acceleration is estimated by using the quadratic phase function, and a second-order phase item corresponding to the acceleration is constructed to compensate Doppler diffusion of the echo signal; and finally, long-term phase-coherent accumulation is performed soas to realize high-speed weak target detection of bistatic radar. The method disclosed by the invention is high in operation speed, stable in performance and applicable to detection of weak targets with a low signal-to-noise ratio and difficultly estimated target parameters.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Geo-synchronous orbit synthetic aperture radar (GEO SAR) frequency modulation changeable standard imaging method under curve track model

The invention discloses a geo-synchronous orbit synthetic aperture radar (GEO SAR) frequency modulation changeable standard (CS) imaging method under a curve track model. The method comprises the following steps of: establishing an oblique-distance and high-order expression under the GEO SAR curve track model; deducing a two-dimensional spectrum expression of an echo signal; performing triple Taylor expansion of a distance frequency on the two-dimensional spectrum expression; compensating a triple phase item of the distance frequency in a two-dimensional frequency domain; calculating a distance migration curve in a distance-Doppler domain and multiplying the distance migration curve by a constructed CS phase function; deducing a distance compensation function to finish distance focusing and distance migration correction; and performing direction compression and direction residual phase correction to finish direction focusing. By the method, the spatial-variant properties of the distance migration can be compensated, a wider imaging plotting bandwidth can be obtained and full-aperture high-resolution imaging can be realized. All types of operation in the method are finished throughfast Fourier transform and phase dot product; furthermore, the efficiency is higher and the method is suitable for engineering implementation.
Owner:XIDIAN UNIV

Method for processing TOPS (terrain observation by progressive scan)-SAR (synthetic aperture radar)-raw data

ActiveUS8049657B2Improve accuracyAvoiding azimuth aliasing (backfoldingRadio wave reradiation/reflectionLandformReference function
Sub-aperture processing is carried out. Within each sub-aperture, range compression and a correction for the target range variation are carried out. Baseband azimuth scaling is used for processing the azimuth signal, wherein a long azimuth reference function and thus a wide azimuth dimension are prevented. The scaling range is not constant and depends on the range, which is not equal to the original range vector. It is calculated such that, in combination with a subsequent derotation step, constant azimuth scanning is achieved for all ranges. The selected derotation function, which is applied in the azimuth time domain, makes it possible for all the targets to be in base band, in this way varying the effective chirp rate. Since the phase is purely quadratic because of the azimuth scaling step, it is thus possible to use an optimal filter which takes account of the effective chirp rate. IFFT results in a focused image, and a final phase function in the time domain allows phase maintenance. Application for SAR, SONAR and seismic raw data processing in the TOPS mode, as well as other modes which make use of the antenna polar diagram being scanned in the azimuth and / or elevation direction.
Owner:DEUTSCHES ZENTRUM FUER LUFT & RAUMFAHRT EV

Multi-angle forward scattering transmittance meter

The invention discloses a multi-angle forward scattering transmittance meter, which comprises a transmitting terminal, a receiving terminal and a control system, wherein the transmitting terminal comprises a modulation circuit and a light source transmitting unit; the receiving terminal comprises photoelectric conversion units and a signal processing circuit; the light source transmitting unit emits a light pulse with a fixed frequency; the emitted light is received by three photoelectric conversion units arranged in a forward scattering direction, and converted into an electric signal after being scattered by atmosphere under the action of the modulation circuit; a weak tested signal is detected through the signal processing circuit and the tested signal is collected through an A/D (alternating/direct) chip, and corresponding meteorological visibility can be calculated by an ARM (Advanced RISC (Reduced Instruction-Set Computer) Machines) embedded control system. According to the invention, different scattering phase factors correspond to different scattering phase functions so that the visibility precision is improved; a scattering signal is received by three scattering angles with 20, 35 and 50 degrees; the fault of a photoelectric detector is judged by comparison of three visibility values and the reliability of a visibility meter is improved.
Owner:HARBIN INST OF TECH

Multi-channel aerosol scattering absorption measuring instrument

The present invention discloses a multi-channel aerosol scattering absorption measuring instrument, comprising a light path device, a detection device and a gas path device. The light path device supplies three different wavelengths of laser entering the detection device in sequence; the detection device is provided with photoelectric detectors at multiple angles for measurement, so as to reduce the measurement error of aerosol scattering coefficient; the gas path device comprises a sample loading unit, a calibration unit and a sample discharging unit; and a light source from the light path device and a gas flow from the gas path device enter the photoacoustic cavity of the detection device respectively and are detected by a control unit. The aerosol scattering absorption measuring instrument of the present invention is characterized by multi-channel, multi-angular, full-scale and direct measurement of scattering phase function and absorption coefficient of aerosol particles, combines the function of synchronously acquiring the optical parameters of an aerosol (such as scattering coefficient, extinction coefficient, visibility, transmittance, single scattering albedo, etc.), and achieves the integrated on-line detection of different optical parameters of an aerosol with high automation degree and good stability.
Owner:NANJING UNIV

Monte Carlo simulation method for underwater uplink laser communication

The invention provides a Monte Carlo simulation method for underwater uplink laser communication. The Monte Carlo simulation method for underwater uplink laser communication comprises the steps that the initial coordinates of photons are determined, that is, the initial quantity of the photons is obtained, a Gaussian light source of laser is sampled, and an initial light source is generated; a next coordinate position is calculated according to the previous photon coordinate position,that is, a random free step length of photons is generated, an initial scattering angle is generated by a scattering phase function, a random azimuth angle is determined, and an initial transmission direction cosine of the photons is determined; and whether the photons are scattered in the next step is judgedaccording to different heights of the photons. According to the Monte Carlo simulation method for underwater uplink laser communication, scattering and weight attenuation of photons in the transmission process are simulated, the scattering positions and weights of the photons are further calculated and judged, the underwater communication condition is accurately simulated, and important guiding significance is provided for improving the quality and stability of underwater communication.
Owner:XIDIAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products