Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2147results about "Photonic quantum communication" patented technology

Quantum communication apparatus, quantum communication system and quantum communication method

The present invention is directed to realize a stable and highly-efficient quantum communication without being influenced by the jitter of the heralding signal. In regard to the quantum encryption transmitting apparatus 200, the pulse-driven heralded single-photon source 201 generates a photon pair, outputs one photon of the photon pair, and outputs the other photon of the photon pair as a heralding signal. The timing adjuster 202 synchronizes the heralding signal with a clock signal for pulse driving the pulse-driven heralded single-photon source 201, and outputs as a trigger signal. The quantum communication modulating unit 203 implements the signal modulation to a quantum signal, in timing with the trigger signal, and transmits the quantum signal to the quantum encryption receiving apparatus 300 via the quantum communication path 101. The heralding signal transmitting unit 205 transmits the heralding signal to the quantum encryption receiving apparatus 300 via the heralding signal communication path 102. The clock signal transmitting unit 206 transmits the clock signal to the quantum encryption receiving apparatus 300 via the clock communication path 103.
Owner:MITSUBISHI ELECTRIC CORP +1

Photon method and system for realizing microwave down-conversion and phase shift by using integrated devices

The invention provides a photon method and system for realizing microwave down-conversion and phase shift by using integrated devices, and belongs to the field of microwave photonics. Firstly, opticalcarriers generated by a laser are input to a double-parallel Mach-Zehnder modulator after passing through a polarization controller, a radio frequency signal is modulated by an upper arm sub-modulator, and carrier suppression double-sideband modulation is realized by DC bias; a local oscillator signal is modulated by a lower arm sub-modulator, and the carrier suppression double-sideband modulation is realized by the DC bias; the DC bias of a main intensity modulator is used for changing the phase difference between the radio frequency optical signal and the local oscillator optical signal. A-1 order optical sideband is filtered from an output carrier suppression double-sideband modulation optical signal by an optical bandpass filter, a +1 order optical sideband is retained, and the useless optical sideband is suppressed below the noise floor. Then, power amplification is performed on the optical signal to compensate the insertion loss of modulator and the filter. At last, a down-conversion signal subjected to phase shift is obtained by performing beat frequency by using a photodetector. A very pure frequency spectrum signal is output, and the performance of an integrated functionlink of down-conversion and phase shift is improved.
Owner:BEIJING UNIV OF TECH +1

Quantum communication ATP (array transform processor) precise tracking system with optical axis self-calibrating function and calibrating method thereof

The invention discloses a quantum communication ATP (array transform processor) precise tracking system with an optical axis self-calibrating function and a calibrating method thereof, aiming at overcoming the problem that the center of the quantum light emitting optical axis and the visual field center of the precise tracking camera are inconsistent owning to emitting vibration, on-track weight loss, thermal gradient and the like. The precise tracking system consisting of a pyramidal prism, a quick directing mirror, a CMOS (complementary metal-oxide-semiconductor) camera, a quantum emitting module, a color-separating piece and the like is adopted, and a path of strong light of other wavelength is introduced in the quantum emitting module by an optical fiber combiner and is used as a self-calibrating light. Before the instrument works, the self-calibrating light is introduced in the camera to form images by a track selector; the position of the mass center of light spot is calculated and is used as the visual axis center during tracking external target. The established inter-satellite or satellite-ground optical link can lead the ATP system to capture and precisely track the target at the receiving end and to exactly send the quantum signal to the receiving end along the optical link simultaneously, thus ensuring to successfully realize the spatial scale quantum communication.
Owner:上海国科航星量子科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products