Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

241 results about "Silicon photonics" patented technology

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what (by analogy with a similar construction in microelectronics) is known as silicon on insulator (SOI).

Optical waveguide and coupler apparatus and method of manufacturing the same

Optical waveguide and coupler devices and methods include a trench formed in a bulk semiconductor substrate, for example, a bulk silicon substrate. A bottom cladding layer is formed in the trench, and a core region is formed on the bottom cladding layer. A reflective element, such as a distributed Bragg reflector can be formed under the coupler device and / or the waveguide device. Because the optical devices are integrated in a bulk substrate, they can be readily integrated with other devices on a chip or die in accordance with silicon photonics technology. Specifically, for example, the optical devices can be integrated in a DRAM memory circuit chip die.
Owner:SAMSUNG ELECTRONICS CO LTD

Method And System For Silicon Photonics Wavelength Division Multiplexing Transceivers

Methods and systems for silicon photonics wavelength division multiplexing transceivers are disclosed and may include, in a transceiver integrated in a silicon photonics chip: generating a first modulated output optical signal at a first wavelength utilizing a first electrical signal, generating a second modulated output optical signal at a second wavelength utilizing a second electrical signal, communicating the first and second modulated output optical signals into an optical fiber coupled to the chip utilizing a multiplexing grating coupler in the chip. A received input optical signal may be split into a modulated input optical signal at the first wavelength and a modulated input optical signal at the second wavelength utilizing a demultiplexing grating coupler in the chip. The first and second modulated input optical signals may be converted to first and second electrical input signals utilizing first and second photodetectors in the chip.
Owner:CISCO TECH INC

Method and system for an optical coupler for silicon photonics devices

Methods and systems for an optical coupler for photonics devices are disclosed and may include a photonics transceiver comprising a silicon photonics die, an optical source module, and a fiber connector for receiving optical fibers and including a die coupler and an optical coupling element. The die coupler may be bonded to a top surface of the photonics die and aligned above an array of grating couplers. The optical coupling element may be attached to the die coupler and the electronics die and the source module may be bonded to the top surface of the photonics die. A continuous wave (CW) optical signal may be received in the photonics die from the optical source module. Modulated optical signals may be received in the photonics die from optical fibers coupled to the fiber connector.
Owner:CISCO TECH INC

Optical module including silicon photonics chip and coupler chip

An optical module includes a waveguide interconnect that transports light signals; a Silicon Photonics chip that modulates the light signals, detects the light signals, or both modulates and detects the light signals; a coupler chip attached to the Silicon Photonics chip and the waveguide interconnect so that the light signals are transported along a light path between the Silicon Photonics chip and the waveguide interconnect; and one of the Silicon Photonics chip and the coupler chip includes first, second, and third alignment protrusions. The other of the coupler chip and the Silicon Photonics chip includes a point contact, a linear contact, and a planar contact. The point contact provides no movement for the first alignment protrusion. The linear contact provides linear movement for the second alignment protrusion. The planar contact provides planar movement for the third alignment protrusion.
Owner:SAMTEC

Silicon photonics photodetector integration

A method of forming an integrated photonic semiconductor structure having a photonic device and adjacent CMOS devices may include depositing a first silicon nitride layer over the adjacent CMOS devices and depositing an oxide layer over the first silicon nitride layer, wherein the oxide layer conformally covers the first silicon nitride layer and the underlying adjacent CMOS devices to form a substantially planarized surface over the adjacent CMOS devices. A second silicon nitride layer is then deposited over the oxide layer and a region corresponding to forming the photonic device. A germanium layer is deposited over the oxide layer and the region corresponding to forming the photonic device. The germanium layer deposited over the adjacent CMOS devices is etched to form a germanium active layer within the photonic region, whereby the oxide layer and the second silicon nitride layer protect the adjacent CMOS devices during the etching of the germanium.
Owner:GLOBALFOUNDRIES US INC

Integrated coherent optical transceiver, light engine

An coherent transceiver includes a single silicon photonics substrate configured to integrate a laser diode chip flip-mounted and coupled with a wavelength tuning section to provide a laser output with tuned wavelengths which is split in X:Y ratio partly into a coherent receiver block as local-oscillator signals and partly into a coherent transmitter block as a light source. The coherent receiver includes a polarization-beam-splitter-rotator to split a coherent input signal to a TE-mode signal and a TM*-mode signal respectively detected by two 90-deg hybrid receivers and a flip-mounted TIA chip assisted by two local-oscillator signals from the tunable laser device. The coherent transmitter includes a driver chip flip-mounted on the silicon photonics substrate to drive a pair of Mach-Zehnder modulators with 90-degree shift in quadrature-phase branches to modulate the laser output to two polarized signals with I / Q modulation and uses a polarization-beam-rotator-combiner to combine them as a coherent output signal.
Owner:MARVELL ASIA PTE LTD

Silicon-photonics-based optical switch

ActiveUS20160327751A1Rapid and low-loss optical switchingQuick switchCoupling light guidesSilicon photonicsLight signal
An optical switching system comprising a switching cell having first and second fixed-position bus waveguides and a moveable shunt waveguide is disclosed. The first bus waveguide includes an input and a first output. The second bus waveguide includes a second output. When the switching cell is in its unswitched state, the shunt waveguide is not optically coupled with either bus waveguide and a light signal can pass from the input to the first output while remaining in the first bus waveguide. When the switching cell is in its switched state, the shunt waveguide is optically coupled with both bus waveguides such that the light signal is coupled out of the first bus waveguide and into the second bus waveguide via the shunt waveguide. As a result, the light signal can pass from the input to the second output while bypassing the first input.
Owner:RGT UNIV OF CALIFORNIA

Method And System For Hybrid Integration Of Optical Communication Systems

Methods and systems for hybrid integration of optical communication systems are disclosed and may include receiving continuous wave (CW) optical signals in a silicon photonics die (SPD) from an optical source external to the SPD. The received CW optical signals may be processed based on electrical signals received from an electronics die bonded to the SPD via metal interconnects. Modulated optical signals may be received in the SPD from optical fibers coupled to the SPD. Electrical signals may be generated in the SPD based on the received modulated optical signals and communicated to the electronics die via the metal interconnects. The CW optical signals may be received from an optical source assembly coupled to the SPD and / or from one or more optical fibers coupled to the SPD. The received CW optical signals may be processed utilizing one or more optical modulators, which may comprise Mach-Zehnder interferometer modulators.
Owner:CISCO TECH INC

Method and system for an optoelectronic built-in self-test system for silicon photonics optical transceivers

Methods and systems for an optoelectronic built-in self-test (BIST) system for silicon photonics optical transceivers are disclosed and may include, in an optoelectronic transceiver having a transmit (Tx) path and a receive (Rx) path, where the Rx path includes a main Rx path and a BIST loopback path: generating a pseudo-random bit sequence (PRBS) signal, generating an optical signal in the Tx path by applying the PRBS signal to a modulator, communicating the optical signal to the BIST loopback path and converting to an electrical signal utilizing a photodetector, the photodetector being a replica of a photodetector in the main Rx path, and assessing the performance of the Tx and Rx paths by extracting a PRBS signal from the electrical signal. The transceiver may be a single complementary-metal oxide semiconductor (CMOS) die or in two CMOS die, where a first comprises electronic devices and a second comprises optical devices.
Owner:CISCO TECH INC

Package structure for photonic transceiving device

A photonic transceiver apparatus in Quad Small Form-factor Pluggable (QSFP) package. The apparatus includes a case having a base member, two partial side members, and a lid member to provide a spatial volume with an opening at a back end of the base member. Additionally, the apparatus includes a printed circuit board (PCB), installed inside the spatial volume over the base member having a pluggable electrical connector at the back end. Further, the apparatus includes multiple optical transmitting devices in mini-transmit-optical-sub-assembly package, each being mounted on a common support structure and having a laser output port in reversed orientation toward the back end. Furthermore, the apparatus includes a silicon photonics chip, including a fiber-to-silicon attachment module, mounted on the PCB and coupled to a modulation driver module and a trans-impedance amplifier module. Moreover, the apparatus includes a pair of optical input / output ports being back connected to the fiber-to-silicon attachment module.
Owner:MARVELL ASIA PTE LTD

Planar lightwave circuit active connector

An assembly of waveguide wavelength multiplexers and demultiplexers, together with continuous wave (CW) laser transmitters that interface to grating couplers on a silicon photonics chip, providing CW sources, multiplexed output and optionally multiplexed input, all using a single photonic lightwave circuit (PLC).
Owner:BROADEX TECH UK LTD

Integrated photonic microwave transceiver system

Examples of systems and methods for integrated photonic broadband microwave transceivers are disclosed based on integrated coherent dual optical frequency combs. In some cases, when the system is configured as a transmitter, multiple radio frequency (RF) carriers can be generated, which can either be encoded independently, or used for broadcasting the same information into different bands. In some cases, when the system is configured as a receiver, the spectrum of the input signal can be sliced into several spectral segments for low-bandwidth detection and analysis. In some systems, the optics-related functionalities can be achieved via integrated optic technology, for example based on silicon photonics, providing tremendous possibilities for mass-production with significantly reduced system footprint.
Owner:IMRA AMERICA

Mzm linear driver for silicon photonics device characterized as two-channel wavelength combiner and locker

The present invention includes a Mach-Zehnder modulator (MZM) linear driver configured in a differential form with two waveguides carrying two traveling waves which supports a two-channel spectral combiner integrated with a wavelength locker. By coupling a DC current source supplied with a modulation voltage with each segment thereof for providing electrical modulation signal overlapping with each of the two traveling waves. The modulated traveling waves in the two waveguides then are combined in one output signal by a multimode interference coupler. Two optical signals at ITU grid channels are separately modulated by two MZMs and combined into a silicon waveguide-based delayed-line interferometer built on a SOI substrate to produce an output signal having a free spectral range equal to twice of the spacing of the two ITU grid channels. Two dither signals can be added respectively to the two optical signals for identifying and locking corresponding two channel wavelengths.
Owner:MARVELL ASIA PTE LTD

Silicon photonics device and communication system therefor

A silicon photonics device and system therefor. The silicon photonics device can include a 300 nm SOI (silicon-on-insulator with 300 nm top Si) overlying a substrate member. A waveguide structure can be configured from a portion of the SOI layer and disposed overlying the substrate member. This waveguide structure can include an AWG (Arrayed Waveguide Gratings) structure with 300 nm×300 nm symmetric grating waveguides or an Echelle grating structure characterized by a top silicon thickness of 300 nm. The waveguide structure can also include an index compensator material configured to provide at least two material index ratings in the waveguide structure.
Owner:MARVELL ASIA PTE LTD

Method And System For Partial Integration Of Wavelength Division Multiplexing And Bi-Directional Solutions

Methods and systems for partial integration of wavelength division multiplexing and bi-directional solutions are disclosed and may include, an optical transceiver on a silicon photonics integrated circuit coupled to a planar lightwave circuit (PLC). The silicon photonics integrated circuit may include a first modulator and first light source that operates at a first wavelength and a second modulator and second light source that operates at a second wavelength. The transceiver and PLC are operable to modulate a first continuous wave (CW) optical signal from the first light source utilizing the first modulator driven by a first electrical signal and modulate a second CW optical signal from the second light source utilizing the second modulator driven by a second electrical signal. The modulated signals may be communicated from the modulators to the PLC utilizing a first pair of grating couplers in the IC and combined in the PLC.
Owner:CISCO TECH INC

Integrated control for silicon photonics

In an example, the present invention includes an integrated system on chip device. The device is configured on a single silicon substrate member. The device has a data input / output interface provided on the substrate member. The device has an input / output block provided on the substrate member and coupled to the data input / output interface. The device has a signal processing block provided on the substrate member and coupled to the input / output block. The device has a driver module provided on the substrate member and coupled to the signal processing block. In an example, the device has a driver interface provided on the substrate member and coupled to the driver module and configured to be coupled to a silicon photonics device. The device also has an interface configured to communicate between the silicon photonics device and the control block.
Owner:MARVELL ASIA PTE LTD

Optical device and fabrication method thereof

The present invention relates to an optical device and a fabrication method thereof. Optical waveguide and coupler devices include a trench formed in a bulk semiconductor substrate, for example, a bulk silicon substrate. A bottom cladding layer is formed in the trench, and a core region is formed on the bottom cladding layer. A reflective element, such as a distributed Bragg reflector can be formed under the coupler device and / or the waveguide device. Because the optical devices are integrated in a bulk substrate, they can be readily integrated with other devices on a chip or die in accordance with silicon photonics technology. Specifically, for example, the optical devices can be integrated in a DRAM memory circuit chip die.
Owner:SAMSUNG ELECTRONICS CO LTD

Fiber coupler for silicon photonics

An apparatus for converting fiber mode to waveguide mode. The apparatus includes a silicon substrate member and a dielectric member having an elongated body. Part of the elongated body from a back end overlies the silicon substrate member and remaining part of the elongated body up to a front end is separated from the silicon substrate member by a second dielectric material at an under region. The apparatus also includes a waveguide including a segment from the back end to a tail end formed on the dielectric member at least partially overlying the remaining part of the elongated body. The segment is buried in a cladding overlying entirely the dielectric member. The cladding has a refractive index that is less than the waveguide but includes an index-graded section with decreasing index that is formed at least over the segment from the tail end toward the back end.
Owner:MARVELL ASIA PTE LTD

Silicon photonics integration multi-wavelength optical sending and receiving module

The invention discloses a silicon photonics integration multi-wavelength optical sending and receiving module relating to the integration photonics structure field of the optical fiber communication field. The sending and receiving module comprises an optical sending unit and an optical receiving unit; when the optical sending unit carries out sending, the laser sent by a laser is filtered into multi-wavelength optical waves with equal wavelength intervals by silicon-based micro-ring filters; the multi-wavelength optical waves are respectively filtered by every silicon-based micro-ring modulator so as to obtain needed wavelengths; the optical waves with the wavelengths are loaded and modulated into optical signals; the optical signals are output to a silicon-based array waveguide grating; the silicon-based array waveguide grating combines the optical signals output by the silicon-based micro-ring filters; the combined optical waves are coupled to an optical fiber through silicone waveguide. According to the invention, the quantity of the sent optical waves can be increased; the wavelength intervals of the optical waves can be controlled; the integration degree is relatively high; the cost is relatively low; and the module of the invention can satisfy the need of a user and is applicable to popularization.
Owner:WUHAN POST & TELECOMM RES INST CO LTD

Sagnac loop mirror based laser cavity on silicon photonics platform

We have demonstrated a novel Sagnac loop and micro-ring based laser cavity which is simple and reliable, with accurately controlled reflectivity and negligible excess loss. The resonant wavelength of a 2 μm radius micro-ring is shown to be lithographically controlled to a standard deviation of 3.6 nm. Both C- and O-Band lasers based on Sagnac loop mirror and micro-ring cavity have been demonstrated. The lasers are shown to be able to be modulated at 40 Gb / s.
Owner:NOKIA SOLUTIONS & NETWORKS OY

Quantum dot soa-silicon external cavity multi-wavelength laser

A hybrid external cavity multi-wavelength laser using a QD RSOA and a silicon photonics chip is demonstrated. Four lasing modes at 2 nm spacing and less than 3 dB power non-uniformity were observed, with over 20 mW of total output power. Each lasing peak can be successfully modulated at 10 Gb / s. At 10−9 BER, the receiver power penalty is less than 2.6 dB compared to a conventional commercial laser. An expected application is the provision of a comb laser source for WDM transmission in optical interconnection systems.
Owner:NOKIA SOLUTIONS & NETWORKS OY

Optical coupling devices and silicon photonics chips having the same

InactiveUS20130156370A1High optical coupling efficiencyCoupling light guidesOptical waveguide light guideSilicon photonicsPhotonic Chip
Provided are optical coupling devices and silicon photonics chips having the same. the optical coupling device may include a lower layer having a first region and a second region, a first core layer disposed on the lower layer, the first core layer including first and second waveguides disposed on the first and second regions, respectively, a clad layer covering the first waveguide, and a second core layer interposed between the clad layer and the lower layer to cover the second waveguide. The second waveguide has a width decreasing with increasing distance from the first region and a vertical thickness greater than that of the first waveguide.
Owner:ELECTRONICS & TELECOMM RES INST

High Density Opto-Electronic Interconnection Configuration Utilizing Passive Alignment

A high density interconnect arrangement takes the form of a backplane-pluggable card, with electrical connections formed along a single (pluggable) edge and all remaining connections provided via optical fibers. An exemplary interconnect arrangement also includes on-board optical sources and silicon photonic-based circuitry for providing optical transceiver functionality. Passively aligned fiber arrays are utilized to provide I / O connections to external elements, as well as between laser sources and on-board silicon photonics.
Owner:AAYUNA INC

Integrated production of self injection locked self phase loop locked optoelectronic oscillator

The present invention details fabrication guidelines of integrated optoelectronic oscillators with frequency and phase stability, having higher frequency selectivity in a relatively small size (compared to the larger size of a higher order electrically realized RF filter), reduced temperature sensitivity, and minimized frequency drift. The integrated photonic components and RF oscillator may use Silicon photonics and microelectronic integration using CMOS and BiCMOS technology, eliminating the need for bulky and / or discrete optical and microwave components.
Owner:SYNERGY MICROWAVE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products