Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

767 results about "Quantum state" patented technology

In quantum physics, a quantum state is the state of an isolated quantum system. A quantum state provides a probability distribution for the value of each observable, i.e. for the outcome of each possible measurement on the system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state.

Quantum cryptography

A method of establishing a shared secret random cryptographic key between a sender and a recipient using a quantum communications channel is described. The method comprises: generating a plurality of random quantum states of a quantum entity, each random state being defined by a randomly selected one of a first plurality of bases in Hilbert space, transmitting the plurality of random quantum states of the quantum entity via the quantum channel to a recipient, measuring the quantum state of each of the received quantum states of the quantum entity with respect to a randomly selected one of a second plurality of bases in Hilbert space, transmitting to the recipient composition information describing a subset of the plurality of random quantum states, analysing the received composition information and the measured quantum states corresponding to the subset to derive a first statistical distribution describing the subset of transmitted quantum states and a second statistical distribution describing the corresponding measured quantum states, establishing the level of confidence in the validity of the plurality of transmitted random quantum states by verifying that the first and second statistical distributions are sufficiently similar, deriving a first binary sting and a second binary string, correlated to the first binary string, respectively from the transmitted and received plurality of quantum states not in the subset, and carrying out a reconciliation of the second binary string to the first binary string by using error correction techniques to establish the shared secret random cryptographic key from the first and second binary strings.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +1

Permanent readout superconducting qubit

A solid-state quantum computing structure includes a d-wave superconductor in sets of islands that clean Josephson junctions separate from a first superconducting bank. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be used between the islands to control entanglements while the quantum states evolve. After the quantum states have evolved to complete a calculation, grounding the islands, for example, through yet another set of single electron transistors, fixes the junctions in states having definite magnetic moments and facilitates measurement of the supercurrent when determining a result of the quantum computing.
Owner:D WAVE SYSTEMS INC

Quantum Cryptographic Communication Method

A sender (1) adds decoy photons to a secret photon having confidential information, then, subjects each photon to a different rotational manipulation, and passes the photons along a quantum channel (3) (S11 and S12). A receiver (2) receives those photons and then obtains information about the position of the decoy photons from the sender (1) through a classical channel (4). Using the information, the receiver (2) subjects each of the decoy and secret photons to a different rotational manipulation and transmits the photons in a rearranged order (S13 and S14). The receiver (1) obtains information about the position and manipulation quantities of the decoy photons from the receiver (2) and decodes the decoy photons. If the quantum state of the decoys is identical to their initial quantum state, the sender (1) determines that no eavesdropper (5) should be present (S15 and S16), cancels only the encryption of the secret photon performed by himself or herself in S12, and transmits the secret photon (S17). The receiver (2) cancels the encryption of the secret photon performed by himself or herself in S13 and thereby obtains the confidential information (S18). The present method can securely send quantum information as well as classical information such as key information, and also effectively detect eavesdropping.
Owner:NARA INSTITUTE OF SCIENCE AND TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products