Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

452 results about "Single electron" patented technology

A single electron has a charge of 2.8×10 −15 Z . Using zeets and a fictitious unit of mass called the wiggle, w, the charge-to-mass ratio of an electron is 2.9×10 6 Z/w .

Permanent readout superconducting qubit

A solid-state quantum computing structure includes a d-wave superconductor in sets of islands that clean Josephson junctions separate from a first superconducting bank. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be used between the islands to control entanglements while the quantum states evolve. After the quantum states have evolved to complete a calculation, grounding the islands, for example, through yet another set of single electron transistors, fixes the junctions in states having definite magnetic moments and facilitates measurement of the supercurrent when determining a result of the quantum computing.
Owner:D WAVE SYSTEMS INC

Terahertz light source chip and manufacturing method thereof, terahertz light source device and manufacturing method thereof, and terahertz light source module and manufacturing method thereof

The invention provides a terahertz light source chip and a manufacturing method thereof, a terahertz light source device and a manufacturing method thereof, and a terahertz light source module and a manufacturing method thereof. The light source chip comprises a two-dimensional electron gas mesa, an electrode, a terahertz resonant cavity and an optical grating, wherein the electrode is formed on the two-dimensional electron gas mesa and used for exciting plasma waves; the terahertz resonant cavity is formed below the two-dimensional electron gas mesa, and a holophote is arranged on the bottom surface of the resonant cavity; the optical grating is formed on the two-dimensional electron gas mesa and used for coupling a plasma wave mode to a terahertz resonant cavity mode so that terahertz wave emission can be generated. Plasma polaritons are formed by strongly coupling the terahertz resonant cavity mode to the plasma wave mode in two-dimensional electron gas under the optical grating, terahertz wave emission can be generated through electric excitation of the plasma polaritons, the problem that terahertz emission is low in frequency or working temperature because of high frequency oscillation relaying on a single electron or quantum jump relaying on a single electron is solved, and the emission frequency range and the working temperature range are widened.
Owner:SUZHOU INST OF NANO TECH & NANO BIONICS CHINESE ACEDEMY OF SCI

System and method for evaluation using electron beam and manufacture of devices

An electron beam apparatus having a longer life time of cathode, and allowing a plurality of electron beams to be arranged adequately around an optical axis and five or more electron beams to be formed from a single electron gun. The electron beams emitted from a cathode made of ZrO / W (tungsten zirconium oxide) or a cathode made of carbide of transition metal to the off-optical axis directions may be converged on a sample to scan it. The apparatus includes a plate for reducing a vacuum conductance defined between the electron gun chamber side and the sample side, and apertures are formed through the plate at locations offset from the optical axis allowing for the passage of the electron beams. In order to evaluate a pattern on the sample, the electron beam emitted from the electron gun is incident to the sample surface via an objective lens. The objective lens is composed of a flat electrode having an aperture centered on the optical axis and placed in parallel with the sample surface and an electromagnetic lens including a gap formed in a side facing to the sample. Further, in order to inspect a mask, spacing among a plurality of electron beams after having passed through the mask are extended by a magnifying lens and thus widely spaced electron beams are then converted into optical signal in a scintillator.
Owner:EBARA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products