Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5364 results about "Charge voltage" patented technology

Voltage Voltage is electric potential energy per unit charge, measured in joules per coulomb ( = volts). It is often referred to as “electric potential”, which then must be distinguished from electric potential energy by noting that the “potential” is a “per-unit-charge” quantity.

Methods of charging battery packs for cordless power tool systems

In a method of charging a battery pack, the pack is inserted in a charger and an initial set of checks of cell voltage and pack temperature is performed. Once the initial set of checks is satisfied, the cells may be charged at a first constant current level. The first constant current level is adjusted to one or more lower levels of constant current until cell voltages of all the cells are within a full charge voltage window. The voltage window is defined between a minimum full charge cell voltage level and a maximum full charge cell voltage level. The charge may be terminated once all of the cells are within the full charge voltage window.
Owner:BLACK & DECKER INC

Source side self boosting technique for non-volatile memory

A non-volatile semiconductor memory system (or other type of memory system) is programmed in a manner that avoids program disturb. In one embodiment that includes a flash memory system using a NAND architecture, program disturb is avoided by increasing the channel potential of the source side of the NAND string during the programming process. One exemplar implementation includes applying a voltage (e.g. Vdd) to the source contact and turning on the source side select transistor for the NAND sting corresponding to the cell being inhibited. Another implementation includes applying a pre-charging voltage to the unselected word lines of the NAND string corresponding to the cell being inhibited prior to applying the program voltage.
Owner:SANDISK TECH LLC

Capacitive-coupled non-volatile thin-film transistor strings in three dimensional arrays

Multi-gate NOR flash thin-film transistor (TFT) string arrays are organized as three dimensional stacks of active strips. Each active strip includes a shared source sublayer and a shared drain sublayer that is connected to substrate circuits. Data storage in the active strip is provided by charge-storage elements between the active strip and a multiplicity of control gates provided by adjacent local word-lines. The parasitic capacitance of each active strip is used to eliminate hard-wire ground connection to the shared source making it a semi-floating, or virtual source. Pre-charge voltages temporarily supplied from the substrate through a single port per active strip provide the appropriate voltages on the source and drain required during read, program, program-inhibit and erase operations. TFTs on multiple active strips can be pre-charged separately and then read, programmed or erased together in a massively parallel operation.
Owner:SUNRISE MEMORY CORP

Single-electron floating-gate MOS memory

A Single Electron MOS Memory (SEMM), in which one bit of information is represented by storing only one electron, has been demonstrated at room temperature. The SEMM is a floating gate Metal-Oxide-Semiconductor (MOS) transistor in silicon with a channel width (about 10 nanometers) which is smaller than the Debye screening length of a single electron stored on the floating gate, and a nanoscale polysilicon dot (about 7 nanometers by 7 nanometers by 2 nanometers) as the floating gate which is positioned between the channel and the control gate. An electron stored on the floating gate can screen the entire channel from the potential on the control gate, and lead to: (i) a discrete shift in the threshold voltage; (ii) a staircase relation between the charging voltage and the shift; and (iii) a self-limiting charging process. The structure and fabrication of the SEMM is well adapted to the manufacture of ultra large-scale integrated circuits.
Owner:MINNESOTA RGT UNIV OF A CORP OF MN

Matrix element precharge voltage adjusting apparatus and method

An apparatus for establishing and applying a voltage to precharge current-driven elements in a matrix. During ordinary scan cycles, a conduction voltage is sensed while the elements conduct a selected current. One or more such sensed conduction voltages are combined to provide a basis for a precharge voltage. Conduction and transient errors are determined, and are compensated for by offsetting the final precharge voltage from the conduction voltage basis. The final precharge voltage is provided to one or more columns during a precharge period of the scan cycle.
Owner:CLARE MICRONIX INTEGRATED SYST

Display device and driving method thereof

A display device is provided, including light emitting elements, first switching transistors transmitting data signals in response to scanning signals, second switching transistors transmitting a reverse bias voltage in response to a switching signal, capacitors charging voltages based on the data signals and discharging based on the reverse bias voltage; and driving transistors, each driving a transistor connected to a driving voltage and turning on and off in response to the voltage charged in the capacitor to connect and disconnect a signal passage from the driving voltage to the light emitting element.
Owner:SAMSUNG ELECTRONICS CO LTD

Display apparatus, display driving apparatus and method for driving same

A light-emitting element capable of emitting light having a preferred gradation level depending on display data. During a precharge period, a data driver applies a precharge voltage to a capacitor via a data line. After the application of the precharge voltage, a voltage converter reads a first reference voltage Vref(t1) and a second reference voltage Vref(t2) to generate a compensation voltage based on a difference between the respective reference voltages. Based on the compensation voltage, a voltage calculator compensates an original gradation level voltage Vorg having a value in accordance with display data generated by a gradation level voltage generator. The voltage calculator generates a compensated gradation level voltage Vpix corresponding to a variation amount of an element characteristic for a transistor Tr13 for driving light emission to apply the compensated gradation level voltage Vpix to a data line Ld.
Owner:SOLAS OLED LTD

Charging device of electronic equipment and power adapter of charging device

The invention belongs to the technical field of charging, and provides a charging device of electronic equipment and a power adapter of the charging device. In the process of charging a battery in a conventional charging mode after the power adapter is powered on or resets, when the output current value of the power adapter is within the conventional current range at a preset time interval, the power adapter is in quick charging inquiry communication with the electronic equipment; after the electronic equipment sends a quick charging instruction to the power adapter, the power adapter adjusts the output voltage according to the battery voltage information fed back by the electronic equipment, and when the output voltage meets the quick charging voltage condition preset by the electronic equipment, the power adapter adjusts the output current and the output voltage to charge the battery according to the quick charging mode, and therefore the purpose of quickly charging the battery to shorten the charging time is achieved.
Owner:GUANGDONG OPPO MOBILE TELECOMM CORP LTD

Battery charger and method of charging a battery

Stationary and on-board battery chargers, methods of charging batteries, electric-vehicle chargers, and vehicles with chargers, including electric vehicles and hybrid electric vehicles. Chargers may automatically charge at the correct battery voltage for various types of batteries. Chargers have variable AC power supplies controlled by digital controllers, isolation transformers, and rectifiers. Transformers may be foil-type, and may have copper foil. Power supplies may be variable-frequency generators and the controllers may control the frequency. Electric vehicle chargers may have card readers, and vehicles may have batteries and a charger. Methods of charging include identifying the battery type and gradually increasing the charging at different rates of increase while monitoring charging voltage, charging current, or both, until a current lid is reached. Charging may occur at constant current and then at constant voltage.
Owner:ARIZONA PUBLIC SERVICE

Battery charger and method of charging a battery

Stationary and on-board battery chargers, methods of charging batteries, electric-vehicle chargers, and vehicles with chargers, including electric vehicles and hybrid electric vehicles. Chargers may automatically charge at the correct battery voltage for various types of batteries. Chargers have variable AC power supplies controlled by digital controllers, isolation transformers, and rectifiers. Transformers may be foil-type, and may have copper foil. Power supplies may be variable-frequency generators and the controllers may control the frequency. Use of the variable frequency generator supply facilitates reduced component size and weight and better battery charging performance. Electric vehicle chargers may have card readers, and vehicles may have batteries and a charger. Methods of charging include identifying the battery type and gradually increasing the charging at different rates of increase while monitoring charging voltage, charging current, or both, until a current lid is reached. Charging may occur at constant current and then at constant voltage.
Owner:ARIZONA PUBLIC SERVICE

Method and Apparatus for Energy Harvesting and/or Generation, Storage, and Delivery

A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications. Also low power charge pump driver circuits for efficient scavenging of low voltage, high current energy sources.
Owner:TPL SRL

Lithium ion battery with high voltage electrolytes and additives

Desirable electrolyte compositions are described that are suitable for high voltage lithium ion batteries with a rated charge voltage at least about 4.45 volts. The electrolyte compositions can comprise ethylene carbonate and solvent composition selected from the group consisting of dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, γ-valerolactone or a combination thereof. The electrolyte can further comprise a stabilization additive. The electrolytes can be effectively used with lithium rich positive electrode active materials.
Owner:IONBLOX INC

Inductively powered sleeve for mobile electronic device

There is disclosed a sleeve for holding a portable electronic device such as an MP3 player, mobile telephone, PDA and the like. The sleeve is provided with an integrally formed secondary winding that enables the sleeve to pick up magnetic flux from an inductive charging platform and associated circuitry for generating a DC charging voltage that can be used to charge a battery in the device while the device is received within the sleeve. The sleeve is formed with a connector designed to fit a power / data connection socket in the device, and may also be provided with a connection port enabling the device to be connected to a computer while it is received within the sleeve.
Owner:CONVENIENTPOWER HK

Method of measuring threshold voltage for a NAND flash memory device

Provided is a method of measuring threshold voltages in a NAND flash memory device. In the method, a test voltage is applied to a wordline of selected memory cells to measure a distribution profile of threshold voltages of memory cells. A voltage summing up a pass voltage and an operation voltage is applied to wordlines of deselected cells. The operation voltage is applied to a well and a common source line. A voltage summing up a precharge voltage and the operation voltage is applied to a bitline. After then, a voltage variation on the bitline can be detected to measure a threshold voltage of a memory cell. A negative threshold voltage can be measured by applying a positive voltage with reference to a voltage, as the threshold voltage of the memory cell, set by subtracting the operation voltage from the test voltage in accordance with the bitline voltage variation.
Owner:STMICROELECTRONICS SRL +1

Mobile terminal, direct charging power adapter and charging method

The invention discloses a mobile terminal, a direct charging power adapter and a charging method. The method comprises the steps: the mobile terminal detects the short circuit condition of two communication pins in the USB interface of the mobile terminal, when the mobile terminal is inserted by an external equipment which is the power adapter, the mobile terminal can automatically identify the type of the external connected charging equipment by adopting the power adapter communication; at the same time, a special express charge mode is designed for the direct charging power adapter, when a battery of the mobile terminal is concentratedly charged, the battery is directly charged with heavy current by using the charging voltage outputted by the direct charging power adapter, and the volt value of the charging voltage can be dynamically adjusted according to the variation of the voltage of the battery. According to the above, on the premise that the safety of the battery charge is guaranteed, the great increase of the battery charging speed is realized, the required time of single charging of the mobile terminal is shortened, the influences on daily use of user caused by the repeatedly and long time charging of the mobile terminal is reduced, and the user satisfaction is greatly improved.
Owner:QINGDAO HISENSE MOBILE COMM TECH CO LTD

Adapter

The invention discloses an adapter. A mobile terminal is charged through a data line, and a source end connector is used for receiving required charging voltage and required charging current from the mobile terminal. A control unit is used for obtaining the charging voltage and the charging current. The control unit is used for comparing the charging voltage and the charging current with the required charging voltage and the required charging current respectively, and a control signal is generated when the charging voltage and the charging current are different from the required charging voltage and the required charging current. A PWM (Pulse-Width Modulation) driving module is used for adjusting an output pulse signal according to the control signal so as to control the start frequency of a switch unit and change a third alternating current, and thus the charging voltage and the charging current are adjusted to the required charging voltage and the required charging current. In the charging process of the adapter, the adapter outputs voltage and current matched with the required charging voltage and the required charging current of the mobile terminal, and thus the charging effect of the mobile terminal is better.
Owner:李昊

Storage battery system and automobile

A storage battery system includes a battery module including nonaqueous electrolyte secondary batteries. The storage battery system further includes a temperature sensor which measures a temperature of the battery module, a voltmeter which measures a voltage of each of the nonaqueous electrolyte secondary batteries and a charge control unit which controls a maximum end-of-charge voltage V1 (V) of the nonaqueous electrolyte secondary batteries to fall within the range defined in formula (1) given below when the temperature of the battery module is not lower than 45° C. and is not higher than 90° C.: 0.85×V0≦V1≦0.96×V0   (1)
Owner:KK TOSHIBA

Self boosting technique

A non-volatile semiconductor memory system (or other type of memory system) is programmed in a manner that avoids program disturb. In one embodiment that includes a flash memory system using a NAND architecture, program disturb is avoided by increasing the channel potential of the source side of the NAND string during the programming process. One exemplar implementation includes applying a voltage (e.g. Vdd) to the source contact and turning on the source side select transistor for the NAND sting corresponding to the cell being inhibited. Another implementation includes applying a pre-charging voltage to the unselected word lines of the NAND string corresponding to the cell being inhibited prior to applying the program voltage.
Owner:SANDISK TECH LLC

Solid image pickup device, image pickup system and method of driving solid image pickup device

The solid image pickup device of the present invention comprises a photoelectric conversion part, a charge-voltage conversion part for converting electric charges from the photoelectric conversion part to voltage signals, a signal amplifier for amplifying the voltage signals generated in the charge-voltage conversion part, charge transfer means for transferring photo-electric charges from the photoelectric conversion part to the charge-voltage conversion part, and means for applying a certain voltage to a charge-voltage conversion part, wherein at least two readout operations for reading out the photo-electric charges accumulated during a period of accumulating photo-electric charges in the photoelectric conversion part via a signal amplifier.
Owner:CANON KK

System for Energy Harvesting and/or Generation, Storage, and Delivery

A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.
Owner:TPL SRL

Battery charging device for a mobile apparatus using an ear-microphone jack

A battery charging device using an ear-microphone jack of a mobile apparatus. The battery charging device comprises a battery; an ear-microphone socket having a microphone contact, an earphone contact, and a common ground contact; a modem chip having a microphone input port connected to the microphone contact or an internal microphone and an earphone output port connected to the earphone contact or an internal speaker; and a cutting-off element connected between a power supply contact and the battery, for providing a charging voltage provided via the power supply contact to the battery and preventing a current from flowing backward from the battery to the modem chip. A power supply device comprises a plug having terminals connectable to contacts of the ear-microphone socket; and a power source connector for connecting a power supply source to the plug.
Owner:SAMSUNG ELECTRONICS CO LTD

Battery charger apparatus

A system for actively controlling the charging profile of a battery uses a software-based alternator control unit to control the charging voltage. The system optimizes battery and alternator life. The system, on a dynamic basis, uses battery open-circuit voltage (OCV) to estimate battery state-of-charge (SOC). Also, the charging current of the battery is periodically estimated; this, after processing, provides an estimated SOC of the battery.
Owner:MIXON

Cell charging device and method

The invention belongs to the technical field of charging and provides a cell charging device and method. In the process of charging a cell by utilizing the cell charging device comprising a power adapter and a charging control module, the power adapter charges the cell in a conventional charging mode first; when the output current value of the power adapter is in a conventional current range in a preset time interval, the power adapter is in quick charge inquiry communication with the charging control module; after the charging control module sends a quick charge instruction command to the power adapter, the power adapter adjusts output voltage according to the cell voltage information fed back by the charging control module; when the output voltage accords with the preset quick charge voltage condition of the charging control module, the power adapter adjusts output current and output voltage according to the quick charge mode so as to charge the cell; and meanwhile, the charging control module introduces a direct current from the power adapter to charge the cell, and thus the purpose of reducing charging time by carrying out quick charge on the cell is realized.
Owner:GUANGDONG OPPO MOBILE TELECOMM CORP LTD

Charging mode control circuit and method

The present invention provides a charging mode control circuit and method. By utilizing such charging mode control circuit and method, a secondary battery fixed in a portable device can be quickly charged when the portable device communicate with an external computer. The method includes the steps of:a) providing a commutator, the commutator comprising an AC / DC adapter, a first interface, and a second interface, wherein the first interface is connected to the external computer and the second interface is connected to the portable device; b) comparing a charging voltage with a reference voltage, thereby producing a high voltage level signal according to a comparison result, wherein the charging voltage come from the AC / DC adapter; and c) selecting a fast-charging mode on the secondary battery according to the high voltage level signal.
Owner:HON HAI PRECISION IND CO LTD

Implantable power management system

The method and system for managing power supplied from a charging circuit to a power source in an implantable medical device comprises the steps of and circuitry for: measuring the current drain of the medical device; measuring the elapsed time since the last full charge of a power source of the device; calculating the actual capacity of the power source (corrected for fade) based on the variable of current drain and the variable of elapsed time; calculating the operating time based on the variable of current drain and the variable of the actual capacity of the power source; measuring the voltage of the power source; signaling the medical device when the power source voltage has reached a certain low value which requires disconnection from the power source; disconnecting, during discharging, the power source from the medical device upon the power source reaching a certain low voltage in order to prevent deep discharging of the power source and subsequent damage; precisely limiting the charging voltage to the power source in order to prevent overcharging beyond safe limits; disconnecting, during charging, the power source from the charging circuit upon the power source reaching a certain high voltage in order to prevent overcharging of the power source and subsequent damage; sensing when the electromagnetic waves being transmitted by an RF transmitter / charger induce a voltage level above a certain value at an RF receiver of the implanted power management system; reconnecting power supply inputs of the medical device to the power source upon sensing this induced high voltage level; monitoring the temperature of the power source during charging and discharging; disconnecting the charging circuitry from the power source if the temperature of the power source raises above a certain level during charging; reconnecting the charging circuitry to the power source when the temperature of the power source drops below a certain low value during charging; disconnecting the implanted medical device from the power source if the temperature of the power source raises above a certain level during discharging; and, reconnecting the medical device to the power source when the temperature of the power source drops below a certain low value during discharging.
Owner:EXONIX

Battery charger and method of charging a battery

InactiveUS7411371B2Quickly and conveniently chargeReduced size and massBatteries circuit arrangementsPropulsion by batteries/cellsOn boardCopper foil
Stationary and on-board battery chargers, methods of charging batteries, electric-vehicle chargers, and vehicles with chargers, including electric vehicles and hybrid electric vehicles. Chargers may automatically charge at the correct battery voltage for various types of batteries. Chargers have variable AC power supplies controlled by digital controllers, isolation transformers, and rectifiers. Transformers may be foil-type, and may have copper foil. Power supplies may be variable-frequency generators and the controllers may control the frequency. Use of the variable frequency generator supply facilitates reduced component size and weight and better battery charging performance. Electric vehicle chargers may have card readers, and vehicles may have batteries and a charger. Methods of charging include identifying the battery type and gradually increasing the charging at different rates of increase while monitoring charging voltage, charging current, or both, until a current lid is reached. Charging may occur at constant current and then at constant voltage.
Owner:ARIZONA PUBLIC SERVICE

Battery packs

A battery pack having a secondary battery is disclosed. The battery pack comprises at least one voltage converter; and switching means for switching an operation mode of the voltage converter to one of a charging mode and a discharging mode, in the charging mode, a charging voltage being output to the secondary battery, in the discharging mode, a voltage of the secondary battery being converted into a predetermined discharging voltage and the converted voltage being output.
Owner:MURATA MFG CO LTD

Floating body semiconductor memory device and method of operating the same

A semiconductor memory device includes a memory cell array having first and second blocks, respectively including first and second memory cells with floating bodies. The first memory cell is connected between a first bit line and a source line, and the second memory cell is connected between a second bit line and the source line. A sense amplifier equalizes the sense bit line and the inverted sense bit line to be an equalization voltage during an equalization operation, pre-charges the sense bit line and the inverted sense bit line to first and second pre-charge voltages during a pre-charge operation, and amplifies a voltage difference between the sense bit line and the inverted sense bit line during read and write operations. The first pre-charge voltage is higher than the equalization voltage and the second pre-charge voltage is higher than the equalization voltage and lower than the first pre-charge voltage.
Owner:SAMSUNG ELECTRONICS CO LTD

Fast-charging method, mobile terminal and power adapter capable of being charged directly

The invention discloses a fast-charging method, a mobile terminal and a power adapter capable of being charged directly. The fast-charging method is provided based on the power adapter of which output voltage dynamic is adjustable. The voltage of the battery-core of a battery is divided into multiple sections, then a sectional-type constant-current charging way is adopted, the value of the charging voltage output through the power adapter is adjusted dynamically according to the located sections of the battery-core voltage of the battery inside the mobile terminal in the charging process, and the battery is charged directly through the charging voltage output through the power adapter, so that the charging current is improved greatly, thereby the charging speed of the battery is accelerated, the single-time charging time needed by the movable terminal is shortened, the influence of the situation that the mobile terminal needs to be charged frequently for a long time on daily use of a user is lowered, and the customer-using satisfaction degree in promoted to a large extent.
Owner:QINGDAO HISENSE MOBILE COMM TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products