Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

969results about "Protecting/adjusting hybrid/EDL capacitor" patented technology

Power system for high temperature applications with rechargeable energy storage

A power system adapted for supplying power in a high temperature environment is disclosed. The power system includes a rechargeable energy storage that is operable in a temperature range of between about seventy degrees Celsius and about two hundred and fifty degrees Celsius coupled to a circuit for at least one of supplying power from the energy storage and charging the energy storage; wherein the energy storage is configured to store between about one one hundredth (0.01) of a joule and about one hundred megajoules of energy, and to provide peak power of between about one one hundredth (0.01) of a watt and about one hundred megawatts, for at least two charge-discharge cycles. Methods of use and fabrication are provided. Embodiments of additional features of the power supply are included.
Owner:FASTCAP SYST

Method and Apparatus for Energy Harvesting and/or Generation, Storage, and Delivery

A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications. Also low power charge pump driver circuits for efficient scavenging of low voltage, high current energy sources.
Owner:TPL SRL

Electrode array for use in electrochemical cells

The invention features an electrode array (7) in which pairs of electrodes (1) are geometrically arranged so that the broadest faces of the exposed electrodes are not directly opposing to each other. Rather, the broadest facing surfaces of the electrodes in the array are parallel, adjacent, or offset at an angle. The electrode geometry of an electrode array of the invention permits electrodes to be in close proximity, thereby lowering series resistance, while minimizing the possibility for short circuits that can cause electrical leakage. An electrode array of the invention can be used in an electrochemical cell, such as a battery, e.g., a lithium battery, a capacitor, a flow-through capacitor, or a fuel cell.
Owner:BIOSOURCE INC

Electrical storage device and manufacturing electrical storage device

An electrical storage device of the present invention is characterized in that a positive electrode, a negative electrode, a lithium electrode, and an electrolyte capable of transferring lithium ion is included, the lithium electrode is arranged to be out of direct contact with the negative electrode, and lithium ion can be supplied to the negative electrode by flowing a current between the lithium electrode and the negative electrode through an external circuit. With the above characteristic, problems such as non-uniform carrying of lithium ion to the negative electrode, shape-change of a cell, and temperature increase of an electrolytic solution under incomplete sealing of a cell and the like can be easily solved. A using method of the electrical storage device is characterized in that, by using the lithium electrode as a reference electrode, the positive electrode potential and negative electrode potential can be measured, and the potential of the positive or negative electrode can be controlled when the electrical storage device is charged or discharged. Therefore, the potentials of the positive electrode and negative electrode can be monitored, thereby it can be easily determined whether deterioration of the electrical storage device is caused by the positive electrode or the negative electrode. Also, it is possible to control the device with the potential difference between the negative electrode and reference electrode, that is, the negative potential. In addition, when characteristics deteriorate such as the internal resistance increase, an appropriate amount of lithium ion can be supplied to the negative electrode and / or positive electrode by the lithium electrode.
Owner:FUJI JUKOGYO KK

Activated carbon, method for production thereof, polarizing electrode and electrical double layer capacitor

In activated carbon obtained by subjecting a carbonaceous material to an activation treatment, the overall content of alkali metals is set at 100 ppm or less, or the overall content of heavy metals is set at 20 ppm or less and the overall content of alkali metals is set at 200 ppm or less. In cases where such activated carbon is used as a raw material in electronic devices, the formation of dendrites by the reductive deposition of alkali metals or heavy metals tends not to occur, so that problems such as short-circuiting or the like tend not to arise, and a good rate of self-discharge retention is shown.
Owner:HONDA MOTOR CO LTD +1

Electric storage unit

An electric power storage unit includes plural storage element blocks, an external bus bar for electrically connecting the storage element blocks, a base made of metal for fixing the storage element blocks, and a cover fixed to the base for accommodating the storage element blocks. Each of the storage element blocks includes plural electric power storage elements connected electrically to each other, and a case made of heat-conductive insulating resin for holding the electric power storage elements. This electric power storage unit reduces variation of cooling of the electric power storage elements, hence having high reliability.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Capacitor

The present invention is characterized by obtaining a high charge / discharge capacity upon high rate charging / discharging in a hybrid capacitor having characteristics of both an electric double layer capacitor and a lithium-ion secondary battery. Specifically, the present invention is a capacitor comprising: a positive electrode 1 composed of a polarizable electrode containing activated carbon; a negative electrode 2 containing as an anode active material a carbon material capable of inserting / extracting lithium ion; and a nonaqueous electrolyte containing lithium ion, wherein a charge cutoff potential for the negative electrode 2 is within the range of 0.15 to 0.25 V (vs. Li / Li+).
Owner:SANYO ELECTRIC CO LTD

Electric device assembly and film-covered electric device structure

Assembled battery (80) includes two battery cells (20A, 20B) arranged in parallel, which are accommodated in single parallel-arranged module (50). Inter-battery airflow passage (65) is formed between parallel-arranged modules so as to allow cooling air to pass therethrough. Pressure contact members (60) each have hollow portion (61) formed by solid portion (66) and thin wall portion (61a) and are arranged in layers. Hollow portion (61) forms a cooling air passage. Cooling air supplied to the cooling air passage is sent to battery cell (20B) on the rear side, and directed and supplied toward the central part of battery cell (20B). Solid portions (66) in area A hold electrode tab (25) therebetween while pressure contact members (60) are in contact with each other in area B.
Owner:NEC CORP

Heat resisting separator having ultrafine fibrous layer and secondary battery having the same

A polyolefin separator having an heat-resistant ultrafine fibrous layer and a secondary battery using the same, in which the separator has a shutdown function, low thermal contraction characteristics, thermal endurance, excellent ionic conductivity, excellent cycling characteristics at the time of battery construction, and excellent adhesion with an electrode. The present N invention adopts a very simple and easy process to form an ultrafine fibrous layer through an electrospinning process, and at the same time, to remove solvent and to form pores. Accordingly, the separator of the present invention is useful particularly for electrochemical devices used in a hybrid electric automobile, an electric automobile, and a fuel cell automobile, requiring high thermal endurance and thermal stability.
Owner:KOREA INST OF SCI & TECH

Method of formation and charge of the negative polarizable carbon electrode in an electric double layer capacitor

A method of formation and charge of a negative polarizable electrode of an electric double layer capacitor. The method can be used for manufacturing of high capacitance capacitors utilizing the energy of the electric double layer. The methods achieve hydrogen evolution on carbonaceous materials using very negative potentials. The methods provide an EDL capacitor, employing an aqueous electrolyte, with improved specific energy. The methods may also ensure the hermeticity of the capacitor. The methods include pretreating the electric double layer capacitor by keeping the negative polarizable electrode at a desired minimum potential prior to use. Desirably, the minimum potential ranges from about -0.25 to about -1.2 V vs. a reference hydrogen electrode.
Owner:WAINWRIGHT D WALKER

High-Power Ultracapacitor Energy Storage Cell Pack and Coupling Method

An ultracapacitor energy storage cell pack including an ultracapacitor assembly including a plurality of ultracapacitors, each ultracapacitor including opposite ends with connection terminals protruding therefrom for directly connecting the ultracapacitors end-to-end in series; and a plurality of interconnections for mechanically and electrically interconnecting the ultracapacitors end-to-end in series without the connection terminals from adjacent ultracapacitors contacting each other, preventing mechanical stress in the connection studs.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON

Polymer gel electrolyte, secondary cell, and electrical double-layer capacitor

A polymer gel electrolyte includes an electrolyte solution composed of a plasticizer with at least two carbonate structures on the molecule and an electrolyte salt, in combination with a matrix polymer. Secondary batteries made with the polymer gel electrolyte can operate at a high capacitance and a high current, have a broad service temperature range and a high level of safety, and are thus particularly well-suited for use in such applications as lithium secondary cells and lithium ion secondary cells. Electrical double-layer capacitors made with the polymer gel electrolyte have a high output voltage, a large output current, a broad service temperature range and excellent safety.
Owner:NISSHINBO IND INC

Thermopolymerizable composition for battery use

The present invention provides (1) a thermopolymerizable composition containing a thermopolymerizable compound having (meth)acrylate having a moiety consisting of oxyalkylene, fluorocarbon, oxyfluorocarbon and / or carbonate group within the molecule, an electrolyte salt, an organic polymerization initiator having no benzene ring, and a polymerization retarder having vinyl group within the molecule, (2) a solid electrolyte obtained by heat-curing the composition, (3) a primary battery, a secondary battery and an electric double-layer capacitor each using the solid electrolyte, and processes for manufacturing the same.
Owner:SHOWA DENKO KK

Battery management system with distributed wireless sensors

A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Owner:LAWRENCE LIVERMORE NAT SECURITY LLC

Flow ultracapacitor

The present application is generally directed towards electrochemical energy storage devices. The devices comprise electrode material suspended in an appropriate electrolyte. Such devices are capable of achieving economical $ / kWh(cycle) values and will enable much higher power and cycle life than currently used devices.
Owner:BASF AG

Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor

The present invention provides an additive for a non-aqueous electrolyte comprising a phosphazene derivative represented by the following formula (1): (PNR2)n formula (1) wherein R represents a fluorine-containing substituent or fluorine, at least one of all R's is a fluorine-containing substituent, and n represents 3 to 14. More particularly, the present invention provides a non-aqueous electrolyte secondary cell and a non-aqueous electrolyte electric double layer capacitor comprising the additive for a non-aqueous electrolyte which exhibit good low temperature characteristics, good resistance to deterioration, and good incombustibility, and accordingly are significantly high in safety.
Owner:BRIDGESTONE CORP

Accumulator device

A package case is structured by a plurality of substantially identical and flat frames stacked on one another. Flat laminate cells (accumulator cells) are individually accommodated in the frames and stacked on one another, so that the number of flat laminate cells (accumulator cells) can readily be changed simply by increasing / decreasing the number of frames to be stacked to meet energy needs and the like. The accumulator device is segmented using the plurality of flat frames, so that externally applied impacts can readily be dispersed and the impact transmitted to the flat laminate cells (accumulator cells) can be reduced without reinforcing the accumulator device 1 with more than necessary strength.
Owner:SUBARU CORP

Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device

A hybrid lead-acid battery / electrochemical capacitor electrical energy storage device. The lead-acid battery and electrochemical capacitor reside in the same case and are electrically connected. Preferably, a hybrid device of the present invention includes at least one non-polarizable positive electrode, at least one non-polarizable negative electrode, and at least one polarizable electric double layer negative electrode. Separators reside between the electrodes and the separators and electrodes are impregnated with an aqueous sulfuric acid electrolyte. A hybrid device of the present invention exhibits high power characteristics.
Owner:UNIVERSAL SUPERCAPACITORS LLC

Wound electric double-layer capacitor

A wound electric double-layer capacitor suppresses electrochemical reaction on polarized electrode layers, reduces characteristic degradation, and has high reliability. The capacitor has a capacitor element formed by winding positive and negative electrodes with a separator interposed between them, a metal case for storing the capacitor element and an electrolyte for driving, and a sealing member for sealing an opening of the metal case. In the positive and negative electrodes, positive and negative electrode lead wires are coupled to exposed parts of current collectors having polarized electrode layers on their both surfaces, respectively. The negative electrode is wound at least one extra turn from the winding end of the positive electrode of the capacitor element, and hence a part where the polarized electrode layers formed in the negative electrode face each other through the separator is formed on the outermost periphery of the capacitor element.
Owner:PANASONIC CORP

Electrical double-layer capacitor

An electrical double-layer capacitor showing a sleight increase of resistance when used under continuous application of high voltage and maintaining high energy residual ratio after standing for a long time includes an electrode element including a pair of electrodes disposed opposite to each other with a separator interposed therebetween, and is impregnated with a nonaqueous electrolyte solution prepared by dissolving quaternary ammonium salts into cyclic carbonates and containing impurities of 30 ppm or less of glycols, 30 ppm or less of primary alcohols and less than 20 ppm of tertiary amines. The water content may be 50 ppm or less. The quaternary ammonium salt may be triethylmethylammonium tetrafluoroborate. The cyclic carbonate may be propylene carbonate. The nonaqueous electrolyte solution may have a concentration of 0.1 to 2.5 mol / liter. The electrode may be a polarizable electrode composed of activated carbon.
Owner:MU IONIC SOLUTIONS CORP +1

Active and passive cooling for an energy storage module

The present disclosure relates to cooling an energy storage module using passive and active cooling techniques. Passive cooling is provided by storing heat in a phase change material that is contact with the energy storage cells of the energy storage module. Active cooling is provided by circulating coolant through coolant passages that are in thermal contact with the energy storage cells. A control system for determining the temperature of the energy storage module and controlling coolant flow when the temperature reaches a predetermined threshold is disclosed.
Owner:CATERPILLAR INC

Systems, structures and materials for electrochemical device thermal management

This disclosure provides casings and materials for the thermal management and protection of an electrochemical cell. The casing may also comprise a composite polymeric material for electrochemical cell thermal management, the composite polymeric material comprising a crosslinked polyether polyol phase change material configured to be in physical contact with at least a portion of an electrochemical cell.
Owner:LATENT HEAT SOLUTIONS LLC

Hybrid Vehicle Propulsion Energy Storage System

An energy storage cell pack cradle assembly for holding multiple rows of energy storage cells oriented along a dominant axis of vibration includes a first cradle member including a plurality of energy storage cell body supporting structures including respective holes; a second cradle member including a plurality of energy storage cell body supporting structures including respective holes; and one or more fasteners connecting the first cradle member and the second cradle member together. The energy storage cell body supporting structures are configured to structurally support the energy storage cells, with the energy storage cells oriented along a dominant axis of vibration, by energy storage cell bodies of the energy storage cells with respective electrically conductive terminals extending through the respective holes without structural support of the electrically conductive terminals by the cradle members.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON

Electrical storage device thermal management systems

A thermal management system for a high density power source is disclosed. The system includes a housing with an interior divided into first and second compartments. The first compartment is configured and adapted to house at least one electrical battery and the second compartment defines a coolant reservoir. A fluid release member connects the first and second compartments. Upon the first compartment reaching a temperature in excess of a predetermined limit, the fluid release member releases coolant form the second compartment into the first compartment to cool the at least one battery within the first compartment.
Owner:HAMILTON SUNDSTRAND CORP

Packaging structure of electric storage cells

Heat generated at electric storage cells are released using intermediate plates that are disposed at intervals of a predetermined number of layers in a lamination of the electric storage cells so as to retain the stacking surfaces of the electric storage cells therebetween, and at the same time, stacking surfaces of the cells are pressed with predetermined pressures by applying loads to the intermediate plates using wires provided for frame supports that are engaged with the intermediate plates. With this, the characteristics of the cells can be stabilized against both vibration and heat, and the performance of the entire package can be improved.
Owner:FUJI JUKOGYO KK

Ultracapacitor pressure control system

An ultracapacitor design minimizes the internal pressure of the cell package by using gas getters, either alone or in combination with a resealable vent in the package. Reducing pressure extends the life of the ultracapacitor. The primary gas types generated within a particular ultracapacitor are measured under multiple possible application conditions. Such conditions may include variables of temperature, application voltage, electrolyte type, length of use, and cycles of use. The primary gas components may be determined and suitable gas getters for different conditions may be formulated. The gas getters may be packed within the ultracapacitor packages, formulated as a negative electrode, doped into the negative current collector, or layered with the negative current collector.
Owner:UCAP POWER INC

Method for manufacturing a nano-structured electrode of metal oxide

The present invention relates to a method for manufacturing a nano-structured metal oxide electrode, and in particular, to a method for manufacturing a metal oxide electrode having a few tens or hundreds of nanometers in diameter that is well adapted to an electrode of a supercapacitor using an alumina or polymer membrane having nano-sized pores as a template. Preferred methods for manufacturing a nano-structured metal oxide electrode comprises steps of preparing an alumina or polymer template having a plurality of nano-sized pores; sputtering a metal acting as a current collector with a few tens of μm of thickness in one surface of the alumina template; charging the template, after the sputtering step, by submerging it into a precipitation solution having a metal salt dissolved therein, and applying a static current or electrode electric potential thereby electrochemically precipitating a metal oxide in the nano-sized pores of the template; a step in which the composite of the alumina or polymer template and the metal oxide are contacted with a sodium hydroxide solution or other base to remove the alumina or polymer template; and an optional drying step to provide the nano-structured metal oxide electrode.
Owner:HYUNDAI MOTOR CO LTD +1

Systems, structures and materials for electrochemical device thermal management

This disclosure provides a casing for the thermal management and protection of an electrochemical cell. The casing may comprise an inner surface configured to be in physical contact with at least a portion of an outer surface of an electrochemical cell. The inner surface may be substantially solid at room temperature. The casing may also comprise a polymer matrix which itself comprises two or more temperature management materials. At least one of the two or more temperature management materials may comprise a microencapsulated phase change material having a latent heat of at least 5 Joules per gram and a transition temperature between 0° C. and 100° C., and at least one other of the two or more temperature management materials may comprise an elastomeric material. The polymer matrix may be substantially homogeneous.
Owner:LATENT HEAT SOLUTIONS LLC

Electrode array for use in electrochemical cells

The invention features an electrode array (7) in which pairs of electrodes (1) are geometrically arranged so that the broadest faces of the exposed electrodes are not directly opposing to each other. Rather, the broadest facing surfaces of the electrodes in the array are parallel, adjacent, or offset at an angle. The electrode geometry of an electrode array of the invention permits electrodes to be in close proximity, thereby lowering series resistance, while minimizing the possibility for short circuits that can cause electrical leakage. An electrode array of the invention can be used in an electrochemical cell, such as a battery, e.g., a lithium battery, a capacitor, a flow-through capacitor, or a fuel cell.
Owner:BIOSOURCE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products