Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1198results about How to "Reduced series resistance" patented technology

Silver conductive paste used for positive electrode of solar battery and preparation technique thereof

The invention provides a silver conductive paste used for positive electrode of solar battery and a preparation technique thereof. The paste comprises silver powder, glass powder, an organic carrier and an additive, wherein the silver powder accounts for 65 to 85 percent of the total weight of the paste and consists of two types of silver powder with different particle sizes; the first type of silver powder has the particle size range of 3 to 15 micrometers and is spherical; the second type of silver powder has the particle size range of 0.1 to 3 micrometers and is spherical; the first type of silver powder accounts for 20 to 50 percent of the total silver powder; the glass powder is of Pb-B-Si-Zn-Ti-Al-O series and accounts for 1 to 10 percent of the total weight of the paste; the organic carrier accounts for 10 to 20 percent of the total weight of the paste; and the additive accounts for 0.1 to 3 percent of the total weight of the paste, and consists of BaO powder and CaO powder. The silver powder with different particle size ranges is mutually filled, thus greatly improving the electrical property of the electrode and improving the photoelectric conversion efficiency of the battery. In addition, the invention can ensure good ohmic contact between the paste and a substrate.
Owner:CENT SOUTH UNIV

Method for forming a raised source and drain without using selective epitaxial growth

A method for forming a raised source and drain structure without using selective epitaxial silicon growth. A semiconductor substrate is provided having one or more gate areas covered by dielectric structures. Doped polysilicon structures are adjacent to the dielectric structures on each side and are co-planar with the dielectric structures from a CMP process. The first dielectric structures are removed to form gate openings and a liner oxide layer is formed on the bottom and sidewalls of the gate openings. Dielectric spacers are formed on the liner oxide layer over the sidewalls of the gate openings, and the liner oxide layer is removed from the bottom of the gate openings and from over the doped polysilicon structures. Source and drain regions are formed in the semiconductor substrate by diffusing impurity ions from the doped polysilicon layer. A gate oxide layer and a gate polysilicon layer are formed over the semiconductor structure and the gate polysilicon layer is planarized to form a gate electrode. In a key step, the dielectric spacers are removed to form spacer openings, and impurity ions are implanted through the spacer openings and annealed to form source and drain extensions. The dielectric spacers are reformed and a self-aligned silicide layer is formed on the doped polysilicon structure and the gate electrode. Alternatively, the self-aligned silicide layer can be formed prior to removing the dielectric spacers and implanting ions to form source and drain extensions.
Owner:CHARTERED SEMICONDUCTOR MANUFACTURING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products