Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

7887results about How to "Increase width" patented technology

Flexible display substrate, flexible organic light emitting display device and method for manufacturing the same

A flexible display substrate, a flexible organic light emitting display device, and a method of manufacturing the same are provided. The flexible display substrate comprises a flexible substrate including a display area and a non-display area extending from the display area, a first wire formed on the display area of the flexible substrate, and a second wire formed on the non-display area of the flexible substrate, wherein at least a part of the non-display area of the flexible substrate is curved in a bending direction, and the second wire formed on at least a part of the non-display area of the flexible substrate includes a first portion formed to extend in a first direction and a second portion formed to extend in a second direction.

Catheter with cryogenic and heating ablation

A catheter includes a cryoablation tip with an electrically-driven ablation assembly for heating tissue. The cryoablation tip may be implemented with a cooling chamber through which a controllably injected coolant circulates to lower the tip temperature, and having an RF electrode at its distal end. The RF electrode may be operated to warm cryogenically-cooled tissue, or the coolant may be controlled to conductively cool the tissue in coordination with an RF treatment regimen, allowing greater versatility of operation and enhancing the lesion size, speed or placement of multi-lesion treatment or single lesion re-treatment cycles. In one embodiment a microwave energy source operates at a frequency to extend beyond the thermal conduction depth, or to penetrate the cryogenic ice ball and be absorbed in tissue beyond an ice boundary, thus extending the depth and / or width of a single treatment locus. In another embodiment, the cooling and the application of RF energy are both controlled to position the ablation region away from the surface contacted by the electrode, for example to leave surface tissue unharmed while ablating at depth or to provide an ablation band of greater uniformity with increasing depth. The driver or RF energy source may supply microwave energy at a frequency effective to penetrate the ice ball which develops on a cryocatheter, and different frequencies may be selected for preferential absorption in a layer of defined thickness at depth in the nearby tissue. The catheter may operate between 70 and minus 70 degrees Celsius for different tissue applications, such as angioplasty, cardiac ablation and tissue remodeling, and may preset the temperature of the tip or adjacent tissue, and otherwise overlay or delay the two different profiles to tailor the shape or position where ablation occurs or to speed up a treatment cycle.

Integrated circuits with substrate protrusions, including (but not limited to) floating gate memories

A floating gate memory cell's channel region (104) is at least partially located in a fin-like protrusion (110P) of a semiconductor substrate. The floating gate's top surface may come down along at least two sides of the protrusion to a level below the top (110P-T) of the protrusion. The control gate's bottom surface may also comes down to a level below the top of the protrusion. The floating gate's bottom surface may comes down to a level below the top of the protrusion by at least 50% of the protrusion's height. The dielectric (120) separating the floating gate from the protrusion can be at least as thick at the top of the protrusion as at a level (L2) which is below the top of the protrusion by at least 50% of the protrusion's height. A very narrow fin or other narrow feature in memory and non-memory integrated circuits can be formed by providing a first layer (320) and then forming spacers (330) from a second layer without photolithography on sidewalls of features made from the first layer. The narrow fin or other feature are then formed without further photolithography in areas between the adjacent spacers. More particularly, a third layer (340) is formed in these areas, and the first layer and the spacers are removed selectively to the third layer. The third layer is used as a mask to form the narrow features.

Stitched pole write element with a T-shaped pole tip portion

A T-shaped pole tip portion of an upper pole of a write element for a magnetic disk drive is provided. One end of the pole tip portion, constituting the bottom of the “T,” forms a narrow nose segment at an air bearing surface, while a wing segment at the opposite end of the pole tip portion constitutes the cross-bar top of the “T.” A transition segment extends between the nose segment and the wing segment. A yoke portion of the upper pole includes a surface that is parallel to the air bearing surface and recessed therefrom by a P3R depth. The transition segment does not widen significantly until after the P3R depth, accordingly, the wing segment is recessed from the air bearing surface by more than the P3R depth.

Method and systems using prediction of outcome for launched objects

Each golfer (1-3) on a golf range (4) has an individual display (12-14) showing at least a predicted outcome of each of his / her shots, and a launch-analyser (6-8) to measure velocity vectors of the ball and / or club at strike for central-computation (9) of the prediction. Vibration and piezo-cable sensors (54,55;68,69) at instrumented targets (5;41-45,47) distributed throughout the range (4), detect the presence of balls arriving in their respective locations for matching with launched balls using the computed predictions and probability; active or passive radio-frequency identification and location of balls may also be used. Where a match is found, error between predicted and actual outcome is applied to adaptive correction of the prediction-computing process, and the actual outcome is displayed to the golfer instead of the prediction. Ball and / or club velocity vectors, and ball spin, at launch are measured from light changes occurring in detection planes (96,97;105;114-117;134;144-146) defined by slit apertures (94,95;104), and resulting from retro-reflection from ball (91;110;131) and / or club (130).

Fabrication method of semiconductor wafer

A fabrication method of a semiconductor wafer can fill trenches formed in a semiconductor substrate with an epitaxial film with high crystal quality without leaving cavities in the trenches. The trenches are formed in the first conductivity type semiconductor substrate. Planes exposed inside the trenches are made clean surfaces by placing the substrate in a gas furnace, followed by supplying the furnace with an etching gas and carrier gas, and by performing etching on the exposed planes inside the trenches by a thickness from about a few nanometers to one micrometer. The trenches have a geometry opening upward through the etching. Following the etching, a second conductivity type semiconductor is epitaxially grown in the trenches by supplying the furnace with a growth gas, etching gas, doping gas and carrier gas, thereby filling the trenches. Instead of making the trenches slightly-opened upward, their sidewalls may be made planes enabling facet formation.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products