Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1596 results about "Air bearing" patented technology

Air bearings (also known as aerostatic or aerodynamic bearings) are bearings that use a thin film of pressurized gas to provide a low friction load-bearing interface between surfaces. The two surfaces do not touch, thus avoiding the traditional bearing-related problems of friction, wear, particulates, and lubricant handling, and offer distinct advantages in precision positioning, such as lacking backlash and static friction, as well as in high-speed applications.

Method and system for continuous large-area scanning implantation process

A method for manufacturing doped substrates using a continuous large area scanning implantation process is disclosed. In one embodiment, the method includes providing a movable track member. The movable track member is provided in a chamber. The chamber includes an inlet and an outlet. In a specific embodiment, the movable track member can include one or more rollers, air bearings, belt member, and/or movable beam member to provide one or more substrates for a scanning process. The method may also include providing a first substrate. The first substrate includes a first plurality of tiles. The method maintains the first substrate including the first plurality of tiles in a vacuum. The method includes transferring the first substrate including the first plurality of tiles from the inlet port onto the movable track member. The first plurality of tiles are subjected to a scanning implant process. The method also includes maintaining a second substrate including a second plurality of tiles in the vacuum. The method includes transferring the second substrate including a second plurality of tiles from the inlet port onto the movable track member. The method includes subjecting the second plurality of tiles to an implant process using the scanning implant process.
Owner:SILICON GENERAL CORPORATION

Stabilization system for sensors on moving platforms

ActiveUS20110175604A1Improve mass balanceSmall biasAcceleration measurementFrequency analysisRotational stabilityAir bearing
A stabilized field sensor apparatus collects field data, in particular magnetic field data, with reduced motion noise. The apparatus includes a tear drop shaped housing, a tow frame in the housing, a plurality of vibration isolating dampers spaced around the frame, a base assembly mounted to the dampers, a support pedestal having a bottom end fixed to the base assembly and an upper free end, a single spherical air bearing connected to the upper free end of the pedestal, an instrument platform with a lower hollow funnel having an upper inside apex supported on the air bearing for a one point support, principal and secondary gyro stabilizers for maintaining pivotal and rotational stability, and at least one field sensor mounted to the instrument platform for collecting the field data while being stabilized against motion noise including vibration, pivoting and rotation from the base assembly, from the tow frame and from the housing. Stabilization of the instrument platform is enhanced by preserving accurate balance through a dynamic balancing system whereby small masses are moved under computer control to maintain the center of mass of the instrument platform at the center of rotation of the spherical air bearing. The dynamic stabilization process is made more precise by actively vibrating the instrument platform by a set of linear vibrators.
Owner:VALE LIMITED

Closed-loop planar linear motor with integral monolithic three-degree-of-freedom AC-magnetic position/orientation sensor

The invention discloses a closed loop planar linear motor which includes a stationary stator (or platen) of arbitrary extent, and a moving forcer which is a single rigid body that can move over the planar stator surface on an air bearing with high speed and high precision in two orthogonal translational directions and a small rotation (or combinations thereof). An important distinguishing feature is a monolithic position and orientation sensor based on alternating current (AC) magnetic techniques which is an integral part of the forcer and occupies otherwise unused space in the forcer body. Also incorporated within the forcer is a special electronic processing element which converts weak AC signals from the sensor into usable high precision position and orientation information relative to the stator surface. A unique controller which is part of the closed-loop linear motor acts to combine information from the AC magnetic sensor with input from a user to provide precise, high-performance closed-loop control of the forcer, thereby enabling the forcer to be positioned with sub-micrometer precision and oriented with sub-millidegree precision on the stator surface. Additionally, owing to its closed-loop nature, the forcer can maintain its position and orientation even in the presence of disturbance forces and torques, and can emulate the operation of a mechanical spring and damper.
Owner:RALPH L HOLLIS JR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products