Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1300results about "Renewable energy products" patented technology

Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices

A bulk-doped semiconductor that is at least one of the following: a single crystal, an elongated and bulk-doped semiconductor that, at any point along its longitudinal axis, has a largest cross-sectional dimension less than 500 nanometers, and a free-standing and bulk-doped semiconductor with at least one portion having a smallest width of less than 500 nanometers. Such a semiconductor may comprise an interior core comprising a first semiconductor; and an exterior shell comprising a different material than the first semiconductor. Such a semiconductor may be elongated and my have, at any point along a longitudinal section of such a semiconductor, a ratio of the length of the section to a longest width is greater than 4:1, or greater than 10:1, or greater than 100:1, or even greater than 1000:1. At least one portion of such a semiconductor may a smallest width of less than 200 nanometers, or less than 150 nanometers, or less than 100 nanometers, or less than 80 nanometers, or less than 70 nanometers, or less than 60 nanometers, or less than 40 nanometers, or less than 20 nanometers, or less than 10 nanometers, or even less than 5 nanometers. Such a semiconductor may be a single crystal and may be free-standing. Such a semiconductor may be either lightly n-doped, heavily n-doped, lightly p-doped or heavily p-doped. Such a semiconductor may be doped during growth. Such a semiconductor may be part of a device, which may include any of a variety of devices and combinations thereof, and, and a variety of assembling techniques may be used to fabricate devices from such a semiconductor. Two or more of such a semiconductors, including an array of such semiconductors, may be combined to form devices, for example, to form a crossed p-n junction of a device. Such devices at certain sizes may exhibit quantum confinement and other quantum phenomena, and the wavelength of light emitted from one or more of such semiconductors may be controlled by selecting a width of such semiconductors. Such semiconductors and device made therefrom may be used for a variety of applications.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Fluid energy converter

Embodiments include apparatus and methods of fluid energy conversion. One embodiment relates to a tube for a fluid energy converter. The tube may include a generally cylindrical and hollow body having an interior surface, an exterior surface, and a longitudinal axis. Another embodiment includes a fluid energy converter having a longitudinal axis and a rotatable tube coaxial about the longitudinal axis. In some embodiments, the rotatable tube converts kinetic energy in a fluid into rotating mechanical energy, or converts rotating mechanical energy into kinetic energy in a fluid.
Owner:VIRYD TECH

Method for purification of as-produced single-wall carbon nanotubes

A method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed. The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths. The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.
Owner:RICE UNIV

Solar cells having a transparent composition-graded buffer layer

A solar cell includes a first layer having a first-layer lattice parameter, a second layer having a second-layer lattice parameter different from the first-layer lattice parameter, wherein the second layer includes a photoactive second-layer material; and a third layer having a third-layer lattice parameter different from the second-layer lattice parameter, wherein the third layer includes a photoactive third-layer material. A transparent buffer layer extends between and contacts the second layer and the third layer and has a buffer-layer lattice parameter that varies with increasing distance from the second layer toward the third layer, so as to lattice match to the second layer and to the third layer. There may be additional subcell layers and buffer layers in the solar cell.
Owner:THE BOEING CO

Organic electronic packages having hermetically sealed edges and methods of manufacturing such packages

Organic electronic packages having sealed edges. More specifically, packages having organic electronic devices are provided. A number of sealing mechanisms are provided to hermetically seal the edges of the package to completely protect the organic electronic device from external elements. A sealant may be implemented to completely surround the organic electronic device. Alternatively, edge wraps may be provided to completely surround the organic electronic device.
Owner:GENERAL ELECTRIC CO

Semiconductor substrate for solid-state image sensing device as well as solid-state image sensing device and method for producing the same

There is provided a semiconductor substrate for solid-state image sensing device in which the production cost is lower than that of a gettering method through a carbon ion implantation and problems such as occurrence of particles at a device production step and the like are solved.Silicon substrate contains solid-soluted carbon having a concentration of 1×1016-1×1017 atoms / cm3 and solid-soluted oxygen having a concentration of 1.4×1018-1.6×1018 atoms / cm3.
Owner:SUMCO CORP

Four junction inverted metamorphic multijunction solar cell

A method of manufacturing a solar cell by providing a first semiconductor substrate and depositing a first sequence of layers of semiconductor material to form a first solar subcell, including a first bond layer disposed on the top of the first sequence of layers. A second semiconductor substrate is provided, and on the top surface of the second substrate a second sequence of layers of semiconductor material is deposited forming at least a second solar subcell. A second bond layer is disposed on the top of said second sequence of layers. The first solar subcell is mounted on top of the second solar subcell by joining the first bond layer to the second bond layer in an ultra high vacuum chamber, and the first semiconductor substrate is removed.
Owner:SOLAERO TECH CORP

Continuous fiber of single-wall carbon nanotubes

A method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed. The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.
Owner:RICE UNIV

Thin two sided single crystal solar cell and manufacturing process thereof

A design and manufacturing method for a photovoltaic (PV) solar cell less than 100 μm thick are disclosed. A porous silicon layer is formed on a wafer substrate. Portions of the PV cell are then formed using diffusion, epitaxy and autodoping from the substrate. All front side processing of the solar cell (junctions, passivation layer, anti-reflective coating, contacts to the N+-type layer) is performed while the thin epitaxial layer is attached to the porous layer and substrate. The wafer is then clamped and exfoliated. The back side of the PV cell is completed from the region of the wafer near the exfoliation fracture layer, with subsequent removal of the porous layer, passivation, patterning of contacts, deposition of a conductive coating, and contacts to the P+-type layer. During manufacturing, the cell is always supported by either the bulk wafer or a wafer chuck, with no processing of bare thin PV cell
Owner:CRYSTAL SOLAR INC

Method for the manufacture of electronic devices on substrates and devices related thereto

Methods for manufacturing electronic devices and devices produced by those methods are disclosed. One such method includes releasably bonding a first surface of a device substrate to a face of a first carrier substrate using a first bonding agent to produce a first composite substrate, where the face of the first carrier substrate includes a pattern of trenches. The method also includes processing the device substrate to manufacture an electronic device on a second surface of the device substrate. The method further includes releasing the device substrate from the first carrier substrate by a releasing agent.
Owner:INTERUNIVERSITAIR MICRO ELECTRONICS CENT (IMEC VZW) +1

Flexible display and manufacturing method thereof

A flexible display of the present invention is an active matrix flexible display in which a TFT is provided for each pixel. In the flexible display, an adhesive layer, a protective layer, a gate electrode for the TFT, which is buried in the protective layer, a gate insulating layer for the TFT, source and drain electrodes for the TFT, a pixel electrode electrically connected to the drain electrode, an organic active layer for the TFT, an organic EL layer including a red (R) emitting layer, a green (G) emitting layer and a blue (B) emitting layer, which are formed on a plurality of the pixel electrodes, a metal electrode, and a sealing layer are formed on a plastic film.
Owner:KYODO INSATU KK KYODO PRINTING CO LTD +1

Segmented rotor blade extension portion

A wind turbine rotor blade extension portion having a plurality of segments, located adjacent one another in a span-wise sense. An interface between adjacent segments is configured to minimize disruption to fluid passing thereover and to inhibit transmission of longitudinal loads between segments. Each segment has a first surface and a second surface. The first surface is spaced from the second surface at a proximal region of the extension portion and the first surface is connected to the second surface at a distal region of the extension portion to thereby generate a fair surface for a rotor blade to which the extension portion is connected, in use.
Owner:VESTAS WIND SYST AS

Perylene-imide semiconductor polymers

ActiveUS20100283047A1Excellent charge transport propertiesLarge solubilityConductive materialSolid-state devicesImideSemiconductor materials
Disclosed are new semiconductor materials prepared from perylene-imide copolymers. Such polymers can exhibit high n-type carrier mobility and / or good current modulation characteristics. In addition, the compounds of the present teachings can possess certain processing advantages such as solution-processability and / or good stability at ambient conditions.
Owner:RAYNERGY TEK INC +1

Method for manufacturing solar cell and solar cell, and method for manufacturing semiconductor device

The present invention is a method for manufacturing a solar cell by forming a p-n junction in a semiconductor substrate having a first conductivity type, wherein, at least: a first coating material containing a dopant and an agent for preventing a dopant from scattering, and a second coating material containing a dopant, are coated on the semiconductor substrate having the first conductivity type so that the second coating material may be brought into contact with at least the first coating material; and, a first diffusion layer formed by coating the first coating material, and a second diffusion layer formed by coating the second coating material the second diffusion layer having a conductivity is lower than that of the first diffusion layer are simultaneously formed by a diffusion heat treatment; a solar cell manufactured by the method; and a method for manufacturing a semiconductor device. It is therefore possible to provide the method for manufacturing the solar cell, which can manufacture the solar cell whose photoelectric conversion efficiency is improved at low cost and with a simple and easy method by suppressing surface recombination in a portion other than an electrode of a light-receiving surface and recombination within an emitter while obtaining ohmic contact; the solar cell manufactured by the method; and the method for manufacturing the semiconductor device.
Owner:SHIN-ETSU HANDOTAI CO LTD +2

Method of continuous processing of thin-film batteries and like devices

A method of making a thin-film device including a substrate-supply station that supplies a substrate. The substrate has a first layer on the substrate. Also described is a method and device for depositing a second layer onto the first layer, wherein energy supplied to the second layer aids in layer formation without substantially heating the substrate. Some embodiments include depositing a photovoltaic cell. In some embodiments, the substrate is a flexible material supplied from a roll. Some embodiments include attaching an integrated circuit to the substrate and operatively coupling the integrated circuit to charge the battery from the photovoltaic cell.
Owner:CYMBET CORP

Continuous deposition process and apparatus for manufacturing cadmium telluride photovoltaic devices

A continuous deposition process and apparatus for depositing semiconductor layers containing cadmium, tellurium or sulfur as a principal constituent on transparent substrates to form photovoltaic devices as the substrates are continuously conveyed through the deposition apparatus is described. The film deposition process for a photovoltaic device having an n-type window layer and three p-type absorber layers in contiguous contact is carried out by a modular continuous deposition apparatus which has a plurality of processing stations connected in series for depositing successive layers of semiconductor films onto continuously conveying substrates. The fabrication starts by providing an optically transparent substrate coated with a transparent conductive oxide layer, onto which an n-type window layer formed of CdS or CdZnS is sputter deposited. After the window layer is deposited, a first absorber layer is deposited thereon by sputter deposition. Thereafter, a second absorber layer formed of CdTe is deposited onto the first absorber layer by a novel vapor deposition process in which the CdTe film forming vapor is generated by sublimation of a CdTe source material. After the second absorber layer is deposited, a third absorber layer formed of CdHgTe is deposited thereon by sputter deposition. The substrates are continuously conveyed through the modular continuous deposition apparatus as successive layers of semiconductor films are deposited thereon.
Owner:CHEN YUNG TIN

Hybrid silicon evanescent photodetectors

Photodetectors and integrated circuits including photodetectors are disclosed. A photodetector in accordance with the present invention comprises a silicon-on-insulator (SOI) structure resident on a first substrate, the SOI structure comprising a passive waveguide, and a III-V structure bonded to the SOI structure, the III-V structure comprising a quantum well region, a hybrid waveguide, coupled to the quantum well region and the SOI structure adjacent to the passive waveguide, and a mesa, coupled to the quantum well region, wherein when light passes through the hybrid waveguide, the quantum well region detects the light and generates current based on the light detected.
Owner:RGT UNIV OF CALIFORNIA

Ge photodetectors

A photodetector device includes a plurality of Ge epilayers that are grown on a substrate and annealed in a defined temperature range. The Ge epilayers form a tensile strained Ge layer that allows the photodetector device to operate efficiently in the C-band and L-band.
Owner:MASSACHUSETTS INST OF TECH

Shadow Mask Methods For Manufacturing Three-Dimensional Thin-Film Solar Cells

Methods for manufacturing three-dimensional thin-film solar cells using a template. The template comprises a template substrate comprising a plurality of three-dimensional surface features. The three-dimensional thin-film solar cell substrate is formed by forming a sacrificial layer on the template, subsequently depositing a semiconductor layer, selectively etching the sacrificial layer, and releasing the semiconductor layer from the template. Select portions of the three-dimensional thin-film solar cell substrate are then doped with a first dopant, while other select portions are doped with a second dopant. Next, selective emitter and base metallization regions are formed using a PECVD shadow mask process.
Owner:BEAMREACH SOLAR INC

Charge injection and transport layers

Compositions for use in hole transporting layers (HTLs) or hole injection layers (HILs) are provided, as well as methods of making the compositions and devices fabricated from the compositions. OLED devices can be made. The compositions comprise at least one conductive conjugated polymer, at least one semiconducting matrix component that is different from the conductive conjugated polymer, and an optional dopant, and are substantially free of an insulating matrix component.
Owner:NISSAN CHEM IND LTD

Semiconductor processing

The invention provides a method for increasing the usable surface area of a semiconductor wafer having a substantially planar surface and a thickness dimension at right angles to said substantially planar surface, the method including the steps of selecting a strip thickness for division of the wafer into a plurality of strips, selecting a technique for cutting the wafer into the strips at an angle to the substantially planar surface, in which the combined strip thickness and width of wafer removed by the cutting is less than the thickness of the wafer, cutting the wafer into strips using the selected technique and separating the strips from each other.
Owner:AUSTRALIEN NAT UNIV

Method For Making A Continuous Laminate, In Particular Suitable As A Spar Cap Or Another Part Of A Wind Energy Turbine Rotor Blade

The method for making a continuous laminate, in particular suitable as a spar cap or another part of a wind energy turbine rotor blade comprises the steps of providing a plurality of parallel fibers, embedding the fibers in a curable matrix material, curing the matrix material so as to obtain a fiber reinforced laminate having upper and lower major surfaces, and forming channels into at least one of the upper and lower major surfaces of the laminate wherein the channels on the upper and / or lower major surfaces are angled with respect to the direction of the fibers.
Owner:GENERAL ELECTRIC CO

Method of producing a composite structure via intermediate products, the related apparatus and a composite structure obtainable by the method

A method of producing a composite structure comprising fibre reinforced material and having a longitudinal direction is described. The method comprises the following steps: a) manufacturing a first structure comprising a first cured composite part having a first thickness and a longitudinal direction with a first end, and a number of first fibre layers extending from the first end, b) manufacturing a second structure comprising a second cured composite part having a second thickness and a longitudinal direction with a second end, and a number of second fibre layers extending from the second end, and c) arranging the first structure and the second structure so that the first end faces towards the second end, and arranging the first fibre layers and the second fibre layers so that at least a part of the first fibre layers overlap at least a part of the second fibre layers in the longitudinal direction, d) supplying liquid resin in order to impregnate the first fibre layers and the second fibre layers, and e) curing the liquid resin in order to form the composite structure comprising the first cured composite part, the second cured composite part, and an intermediate composite part including the first fibre layers and the second fibre layers.
Owner:LM GLASSFIBER

P-n junction optoelectronic device for ionizing dopants by field effect

An optoelectronic device comprising a mesa structure including:a first and a second semiconductor portions forming a p-n junction,a first electrode electrically connected to the first portion which is arranged between the second portion and the first electrode,the device further comprising:a second electrode electrically connected to the second portion,an element able to ionize dopants of the first and / or second semiconductor portion through generating an electric field in the first and / or second semiconductor portion and overlaying at least one part of the side flanks of at least one part of the first and / or second semiconductor portion and of at least one part of a space charge zone formed by the first and second semiconductor portions,upper faces of the first electrode and of the second electrode form a substantially planar continuous surface.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

String interconnection and fabrication of inverted metamorphic multijunction solar cells

A method of manufacturing a solar cell by providing a first substrate; depositing on a first substrate a sequence of layers of semiconductor material forming a solar cell including at least a top subcell and a bottom subcell; mounting a surrogate substrate on top of the sequence of layers adjacent to the bottom subcell; removing the first substrate to expose the surface of the top subcell; removing the surrogate substrate; and holding the solar cell on a vacuum chuck to support it for subsequent fabrication operations, such as attaching interconnects to the solar cells to form an interconnected array.
Owner:SOLAERO TECH CORP

Acene-based organic semiconductor materials and methods of preparing and using the same

Acene-based compounds that can be used to prepare n-type semiconductor materials are provided with processes for preparing the same. Composites and electronic devices including n-type semiconductor materials prepared from these compounds also are provided.
Owner:NORTHWESTERN UNIV +1

Dye-sensitized photoelectric conversion element module and a method of manufacturing the same, and electronic apparatus

A dye-sensitized photoelectric conversion device is formed by sequentially arranging a dye-sensitized semiconductor layer (3), a porous insulating layer (4) and a counter electrode (5) on a transparent conductive layer (2) which is formed on a transparent substrate (1). The counter electrode (5) is composed of a metal or alloy foil having a catalyst layer on one surface which is on the porous insulating layer (4) side, or a foil made of a material having a catalytic activity. At a position between two adjacent dye-sensitized photoelectric conversion devices, the transparent conductive layer (2) of one dye-sensitized photoelectric conversion device and the counter electrode (5) of the other dye-sensitized photoelectric conversion device are electrically connected with each other. The dye-sensitized semiconductor layer (3) and the porous insulating layer (4) are impregnated with an electrolyte. Each dye-sensitized photoelectric conversion device is covered with a sealing layer (7).
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products