Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1586 results about "Electronic packages" patented technology

Electromagnetically determining the relative location of a drill bit using a solenoid source installed on a steel casing

Electrically powered electromagnetic field source beacons installed in a reference well in combination with a down-hole measurement while drilling (MWD) electronic survey instrument near the drill bit in the borehole being drilled permit distance and direction measurements for drilling guidance. Each magnetic field source beacon consists of a coil of wire wound on a steel coupling between two lengths of steel tubing in the reference well, and powered by an electronic package. Control circuitry in the electronic package continuously “listens” for, and recognizes, a “start” signal that is initiated by the driller. After a “start” signal has been received, the beacon is energized for a short time interval during which an electromagnetic field is generated, which is measured by the MWD apparatus. The generated magnetic field may be an AC field, or switching circuitry can periodically reverse the direction of a generated DC electromagnetic field, and the measured vector components of the electromagnetic field are used to determine the relative location coordinates of the drilling bit and the beacon using well-known mathematical methods. The magnetic field source and powering electronic packages may be integral parts of the reference well casing or may be part of a temporary work string installed therein. Generally, numerous beacons will be installed along the length of the reference well, particularly in the important oil field application of drilling steam assisted gravity drainage (SAGD) well pairs.
Owner:HALLIBURTON ENERGY SERVICES INC

Method and apparatus to manufacture an electronic package with direct wiring pattern

An electronic package assembly for electrical interconnection between two electronic modules having differing conductive array parameters is disclosed. The electronic package assembly includes two electronic modules, providing between the two electronic modules an interposer having a top surface and a bottom surface; a first set of conductive arrays having a first conductive array parameter on the top surface, and a second set of conductive arrays having a second conductive array parameter on the bottom surface, the second conductive array and the first conductive array having differing parameters. A plurality of conductors traverses a thickness of the interposer of the electronic package assembly, with the conductors including a conductive material optionally coated with a dielectric material, the conductors having a first end at the first conductive arrays and a second end at the second conductive arrays, whereby the conductors connecting the first and second conductive arrays therein are adapted to spatially transform the differing parameters to provide an electrical interconnection. A conductive matrix surrounds the conductors of the interposer of the electronic package assembly. The first set of conductive arrays includes the same conductive array parameters as a first electronic module and the second set of conductive arrays includes the same conductive array parameters as a second electronic module.
Owner:IBM CORP

Zero force heat sink

A heat sink in a heat transfer relationship with a substrate such as an integrated chip, chip carrier, or other electronic package. The heat sink is connected to a frame which is connected to a printed circuit board or other suitable support on which the substrate is positioned. The heat sink, which extends through an aperture in the frame is coupled to a surface of the substrate. The heat sink is mechanically decoupled from the substrate. Large heat sinks may be thermally connected to surface mount substrates mounted using technologies such as ceramic ball or column grid arrays, plastic ball or column grid arrays, or solder balls or columns. The heat sink is attached coaxially through the aperture to the substrate. After assembly and lead/tin or other metallic surface mount interconnects are relaxed such that the substrate and is completely supported by the frame and the heat sink imparts zero or nearly zero downward force. Because the heat sink moves freely within the aperture during assembly, the heat sink package is useful for a variety of different substrates. Preferably, the frame is a plate and a plurality of studs. The plate material are selected to match the thermal expansion of the underlying support, and the stud material matched the thermal expansion of the substrate. Thus, the frame construction allows matching expansion and contraction of the assembly to the underlying substrate and support.
Owner:IBM CORP

Electronic package with high density interconnect layer

An electronic package, and method of making the electronic package, is provided. The package includes a semiconductor chip and an multi-layered interconnect structure having a high density interconnect layer such as an allylated surface layer. The semiconductor chip includes a plurality of contact members on one of its surfaces that are connected to the multi-layered interconnect structure by a plurality of solder connections. The multi-layered interconnect structure is adapted for electrically interconnecting the semiconductor chip to a circuitized substrate (eg., circuit board) with another plurality of solder connections and includes a thermally conductive layer being comprised of a material having a selected thickness and coefficient of thermal expansion to substantially prevent failure of the solder connections between said first plurality of electrically conductive members and the semiconductor chip. The electronic package further includes a dielectric material having an effective modulus to assure sufficient compliancy of the multi-layered interconnect structure during operation. The allylated surface layer has the property of being able to withstand thermal stresses that arise during thermal cycling operation of the electronic package.
Owner:ULTRATECH INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products