Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1365 results about "Heat flux" patented technology

Heat flux or thermal flux, sometimes also referred to as heat flux density, heat-flow density or heat flow rate intensity is a flow of energy per unit of area per unit of time. In SI its units are watts per square metre (W⋅m⁻²). It has both a direction and a magnitude, and so it is a vector quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small.

Vapor vortex heat sink

A hermetic Rankine cycle in a sealed casing powers an internal centrifugal condensate pump with an internal vapor turbine during forced convective heat transfer between a heat source and a heat sink. No work is imported into the cycle during operation. A centrifugal pumping disk shears the working fluid against a heating surface, sweeping evolving vapor into radial vortices which provide sink flow conduits to a vapor space at the center of the cylindrical turbine. Convective mass flow through the vapor space to the condensing end of the casing spins the turbine and the centrifugal pumping disk which is connected to it. Vapor is continuously swept from the heating surface, so bubbles do not form and superheat while blocking heat flux into liquid working fluid. Vapor is sucked through the radial vortices into the central vapor space and into the condensing end of the casing along the low pressure gradients in vortex cores established by cooling power. A high heat flux surface is thereby thermally connected to a conventional heat sink having high cooling power, for maximal heat extraction at data centers or other heat sources. Vapor vortices organize counterflow of vapor and condensate in a continuous mass flow cycle, and extract work from heat. Organic working fluids can be used in the casing to make even low temperature waste heat a power source.
Owner:MCCUTCHEN CO

High heat flow simulator for spacecraft vacuum heat tests

InactiveCN103600851ASolve high temperatureSolve the technical difficulties of high heat flow simulationCosmonautic condition simulationsAircraft components testingHeat fluxInfrared lamp
The invention discloses a high-temperature high heat flow simulator for spacecraft vacuum heat tests in a space environment simulating chamber. The simulator mainly comprises infrared light arrays, a high-temperature insulation component unit, moving units, a temperature measuring unit and a temperature controlling unit. A plurality of infrared lights in the infrared light arrays are provided with reflective screens, the infrared lights are arrayed and combined to form the infrared light arrays according to requirements of heat flux density and uniformity, baffles surround the periphery of the infrared light arrays, high-temperature multi-layer insulation components are mounted among the infrared lights, a mounting baseplate and the baffles, and a high temperature region is limited in region formed through specimen irradiated face and the infrared light array high-temperature insulation components. According to the high-temperature high heat flow simulator, by means of unique design of the infrared light arrays and the high-temperature insulation components, technical difficulties of high-temperature high heat flow simulation when vacuum heat tests are performed on a spacecraft are solved, high-temperature high heat flow space environment can be simulated when vacuum heat tests are performed on spacecrafts in series of deep space exploration and space shuttles, and the spacecrafts can be tested.
Owner:BEIJING INST OF SPACECRAFT ENVIRONMENT ENG

Thermoelectric cooling and/or moderation of transient thermal load using phase change material

Techniques described and illustrated herein can permit high luminous flux and / or longer lifetimes for a class of photoemissive device configurations and / or uses that generate intense highly localized, but transient heat flux. For example, certain Light Emitting Diode (LED) applications, e.g., for flash illumination, certain solid state laser configurations and other similar configurations and uses may benefit from the developed techniques. In particular, it has been discovered that by locating an amount of appropriate phase change material in close thermal proximity to such a photoemissive device, substantial generated heat fluxes may be “absorbed” into a phase transition of the phase change material. In some configurations, a thermoelectric is employed in conjunction with the phase change material. For example, the thermoelectric may at least partially define a heat transfer path from the photoemissive device to the phase change material. Similar configurations may be employed for photosensitive devices. In such configurations, the phase change material may effectively clamp one side (typically the hot side) of the thermoelectric as heat transferred across the thermoelectric is absorbed into the transition of at least some of the phase change material from a first state thereof to a second state. The thermoelectric may be transiently operated in substantial synchrony with operation of the photoemissive or photosensitive device to provide extremely high density spot cooling when and where desired.
Owner:NANOCOOLERS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products