Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

622results about "Conversion outside reactor/accelerators" patented technology

Microfluidic apparatus and method for synthesis of molecular imaging probes

The invention provides a method and apparatus for preparation of radiochemicals, such as PET molecular imaging probes, wherein the reaction step or steps that couple the radioactive isotope to an organic or inorganic compound to form a positron-emitting molecular imaging probe are performed in a microfluidic environment. The method for synthesizing a radiochemical in a microfluidic environment comprises: i) providing a micro reactor comprising a first inlet port, a second inlet port, an outlet port, and at least one microchannel in fluid communication with the first and second inlet ports and the outlet port; ii) introducing a reactive precursor into the first inlet port of the micro reactor, the reactive precursor adapted for reaction with a radioactive isotope to form a radiochemical; iii) introducing a solution comprising a radioactive isotope into the second inlet port of the micro reactor; iv) contacting the reactive precursor with the isotope-containing solution in the microchannel of the micro reactor; v) reacting the reactive precursor with the isotope-containing solution as the reactive precursor and isotope-containing solution flow through the microchannel of the micro reactor, the reacting step resulting in formation of a radiochemical; and vi) collecting the radiochemical from the outlet port of the micro reactor.
Owner:MOLECULAR TECH

Method for detecting an explosive in an object under investigation

A method for detecting an explosive in an object under investigation involves the initial X-ray irradiation of the object under investigation, e.g. a piece of luggage or mailing, and forming its X-ray images; using the X-ray images to detect areas with a high density of organic materials and identifying articles therein; determining the location, dimensions and supposed mass of an unidentified article; determining and forming a directional pattern of the neutron radiator corresponding to the dimensions of the unidentified article. The method further includes subsequent thermal neutron irradiation of the area with the unidentified article; recording gamma-ray quanta having the energy of 10.8 MeV and cascade gamma-ray quanta with energies of 5.534 and 5.266 MeV by at least two gamma-ray detectors; counting of simultaneously recorded pairs of cascade gamma-ray quanta; determination of the overall gamma-ray intensity, taking into account weight factors in readings of the detectors; determination of the threshold value for the overall gamma-ray intensity basing on the supposed mass of explosive being detected; and making a decision in the event the threshold value of overall gamma-ray intensity is exceeded. When checking small-size objects, the neutron irradiation step is preceded by replacing the ambient air by a gaseous medium not containing nitrogen.
Owner:SCI & TECHN CENT RATEC

High power high yield target for production of all radioisotopes for positron emission tomography

A high power high yield target for the positron emission tomography applications is introduced. For production of Curie level of Fluorine-18 isotope from a beam of proton it uses about one tenth of Oxygen-18 water compared to a conventional water target. The target is also configured to be used for production of all other radioisotopes that are used for positron emission tomography. When the target functions as a water target the material sample being oxygen-18 water or oxygen-16 water is heated to steam prior to irradiation using heating elements that are housed in the target body. The material sample is kept in steam phase during the irradiation and cooled to liquid phase after irradiation. To keep the material sample in steam phase a microprocessor monitoring the target temperature manipulates the flow of coolant in the cooling section that is attached to the target and the status of the heaters and air blowers mounted adjacent to the target. When the target functions as a gas target the generated heat from the beam is removed from the target by air blowers and the cooling section. The rupture point of the target window is increased by a factor of two or higher by one thin wire or two parallel thin wires welded at the end of a small hollow tube which is held against the target window. One or two coils are used to produce a magnetic filed along the beam path for preventing the density depression along the beam path and suppression of other instabilities that can develop in a high power target.
Owner:AMINI BEHROUZ
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products