Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1474 results about "Radiation shield" patented technology

Dispensing and injection system for radiopharmaceuticals

Disclosed is a dispensing and injection system for radiopharmaceuticals, wherein a dosage calibrator is arranged inside a radiation-shielded hermetic chamber for detecting the radioactivity of radiopharmaceuticals contained in a vial. At least one saline water cartridge is arranged inside the casing and includes an internal passage, radiopharmaceuticals discharge end, a radiopharmaceuticals injection end, a and saline water reservoir outlet end. The saline water cartridge forms a saline water reservoir. A movable dispensing and injection mechanism controls radiopharmaceuticals dispensing operation of a syringe and controls movement of the syringe between a radiopharmaceuticals dispensing position and an injection position. When the movable dispensing and injection mechanism moves the syringe to the radiopharmaceuticals dispensing position, the syringe withdraws a predetermined amount of radiopharmaceuticals from the vial. When moved to the injection position, the syringe injects the withdrawn radiopharmaceuticals into the radiopharmaceuticals injection end of the saline water cartridge. After the radiopharmaceuticals is injected into a patient, the saline water stored in the saline water reservoir of the saline water cartridge is withdrawn for effecting flushing process.

Shaped biocompatible radiation shield and method for making same

A radiation applicator system is structured to be mounted to a radiation source for providing a predefined dose of radiation for treating a localized area or volume, such as the tissue surrounding the site of an excised tumor. The applicator system includes an applicator and an adapter. The adapter is formed for fixedly securing the applicator to a radiation source, such as a radiosurgery system which produces a predefined radiation dose profile with respect to a predefined location along the radiation producing probe. The applicator includes a shank and an applicator head, wherein the head is located at a distal end of the applicator shank. A proximate end of the applicator shank couples to the adapter. A distal end of the shank includes the applicator head, which is adapted for engaging and/or supporting the area or volume to be treated with a predefined does of radiation. The applicator can include a low energy radiation filter inside of the applicator head to reduce undesirable low energy radiation emissions. A biocompatible radiation shield may be coupled to the outer surface of the applicator head to block radiation emitted from a portion of the radiation probe, in order to shield an adjacent location or vital organ from any undesired radiation exposure. A plurality of applicators having applicator heads and radiation shields of different sizes and shapes can be provided to accommodate treatment sites of various sizes and shapes.

Deterministic computation of radiation doses delivered to tissues and organs of a living organism

Various embodiments of the present invention provide methods and systems for deterministic calculation of radiation doses, delivered to specified volumes within human tissues and organs, and specified areas within other organisms, by external and internal radiation sources. Embodiments of the present invention provide for creating and optimizing computational mesh structures for deterministic radiation transport methods. In general these approaches seek to both improve solution accuracy and computational efficiency. Embodiments of the present invention provide methods for planning radiation treatments using deterministic methods. The methods of the present invention may also be applied for dose calculations, dose verification, and dose reconstruction for many different forms of radiotherapy treatments, including: conventional beam therapies, intensity modulated radiation therapy (“IMRT”), proton, electron and other charged particle beam therapies, targeted radionuclide therapies, brachytherapy, stereotactic radiosurgery (“SRS”), Tomotherapy®; and other radiotherapy delivery modes. The methods may also be applied to radiation-dose calculations based on radiation sources that include linear accelerators, various delivery devices, field shaping components, such as jaws, blocks, flattening filters, and multi-leaf collimators, and to many other radiation-related problems, including radiation shielding, detector design and characterization; thermal or infrared radiation, optical tomography, photon migration, and other problems.

Lethal and sublethal damage repair inhibiting image guided simultaneous all field divergent and pencil beam photon and electron radiation therapy and radiosurgery

A medical accelerator system is provided for simultaneous radiation therapy to all treatment fields. It provides the single dose effect of radiation on cell survival. It eliminates the inter-field interrupted, subfractionated fractionated radiation therapy. Single or four beams S-band, C-band or X-band accelerators are connected to treatment heads through connecting beam lines. It is placed in a radiation shielding vault which minimizes the leakage and scattered radiation and the size and weight of the treatment head. In one version, treatment heads are arranged circularly and connected with the beam line. In another version, a pair of treatment heads is mounted to each ends of narrow gantries and multiple such treatment heads mounted gantries are assembled together. Electron beam is steered to all the treatment heads simultaneously to treat all the fields simultaneously. Radiating beam's intensity in a treatment field is modulated with combined divergent and pencil beam, selective beam's energy, dose rate and weight and not with MLC and similar devices. Since all the treatment fields are treated simultaneously the dose rate at the tumor site is the sum of each of the converging beam's dose rate at depth. It represents the biological dose rate. The dose rate at d-max for a given field is the individual machine dose rate. Its treatment options includes divergent or pencil beam modes. It enables to treat a tumor with lesser radiation toxicities to normal tissue and higher tumor cure and control.

Apparatus and method for inspecting areas surrounding nuclear boiling water reactor core and annulus regions

A remotely controlled apparatus (112) for inspecting the core (102) and annulus (104) areas of nuclear boiling water reactors (100) includes a circumferential drive mechanism for propelling the apparatus (112) on the steam dam (108) of the reactor (100). The inspection apparatus (112) uses a set of driver rollers (314) that grip the side of the steam dam (108) and provide propulsion for the apparatus. A pinch-roller assembly with high-tension springs (308) and pneumatic air cylinders (310) is utilized for removably securing a set of pinch rollers (312) to the side of the steam dam opposite the side of the driver rollers (314). A set of rollers (304) are adapted to rest on top of the steam dam (108), supporting the weight of the apparatus (112) and enabling the apparatus to move around the steam dam (108). Two positioning guide rails (306) aid in the balance of the apparatus (112), especially when it is stationary. The apparatus (112) has a watertight main body (202), which houses the electrical control wiring and circuitry. The main body (202) has a front camera (204) and a rear camera (205) used to direct the movements of the apparatus (112). The main body also has two turret-type telescoping mast assemblies (208) with telescoping masts 210 and 212, which are capable of extending at a selected distance above and below the main body (202). The mast assemblies 210 and 212 support inspection equipment such as radiation-shielded EVT-1-capable video cameras and radiation-tolerant fiberscopes. The apparatus (112) and its inspection tools are remotely controlled via control consoles with video monitors from a low-dose, non-contaminated enclosure located remotely from a boiling water reactor.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products