Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

87 results about "Intensity-modulated radiation therapy" patented technology

Intensity modulated radiation therapy (IMRT) uses advanced software to plan a precise dose of radiation, based on tumor size, shape and location. A computer-controlled device called a linear accelerator delivers radiation in sculpted doses that match the 3D geometrical shape of the tumor, including concave and complex shapes.

Deterministic computation of radiation doses delivered to tissues and organs of a living organism

Various embodiments of the present invention provide methods and systems for deterministic calculation of radiation doses, delivered to specified volumes within human tissues and organs, and specified areas within other organisms, by external and internal radiation sources. Embodiments of the present invention provide for creating and optimizing computational mesh structures for deterministic radiation transport methods. In general these approaches seek to both improve solution accuracy and computational efficiency. Embodiments of the present invention provide methods for planning radiation treatments using deterministic methods. The methods of the present invention may also be applied for dose calculations, dose verification, and dose reconstruction for many different forms of radiotherapy treatments, including: conventional beam therapies, intensity modulated radiation therapy (“IMRT”), proton, electron and other charged particle beam therapies, targeted radionuclide therapies, brachytherapy, stereotactic radiosurgery (“SRS”), Tomotherapy®; and other radiotherapy delivery modes. The methods may also be applied to radiation-dose calculations based on radiation sources that include linear accelerators, various delivery devices, field shaping components, such as jaws, blocks, flattening filters, and multi-leaf collimators, and to many other radiation-related problems, including radiation shielding, detector design and characterization; thermal or infrared radiation, optical tomography, photon migration, and other problems.
Owner:TRANSPIRE

All field simultaneous radiation therapy

This invention describes a system for generating multiple simultaneous tunable electron and photon beams and monochromatic x-rays for all field simultaneous radiation therapy (AFSRT), tumor specific AFSRT and screening for concealed elements worn on to the body or contained in a container. Inverse Compton scattering renders variable energy spent electron and tunable monochromatic x-rays. It's spent electron beam is reused for radiation with electron beam or to generate photon beam. Tumor specific radiation with Auger transformation radiation is facilitated by exposing high affinity tumor bound heavy elements with external monochromatic x-rays. Heavy elements like directly iodinated steroid molecule that has high affinity binding to estrogen receptor in breast cancer and to iodinated testosterone in prostate cancer or with directly implanted nanoparticles into the tumor are exposed with tuned external monochromatic x-rays for tumor specific radiation therapy. Likewise, screening element's atom's k, l, m, n shell specific Auger transformation radiation generated by its exposure to external monochromatic x-rays is used to screen for concealed objects. Multiple beam segments from a beam storage ring or from octagonal beam lines are simultaneously switched on for simultaneous radiation with multiple beams. The beam on time to expose a tumor or an object is only a few seconds. It also facilitates breathing synchronized radiation therapy. The intensity modulated radiation therapy (IMRT) and intensity modulated screening for concealed objects (IMSFCO) is rendered by varying beam intensities of multiple simultaneous beams. The isocentric additive high dose rate from simultaneously converging multiple beams, the concomitant hyperthermia and chemotherapy and tumor specific radiation therapy and the AFSRT's very low radiation to the normal tissue all are used to treat a tumor with lower radiation dose and to treat a radioresistant and multiple times recurrent tumors that heave no other alternative treatments.
Owner:SAHADEVAN VELAYUDHAN

Predication method for three-dimensional dose distribution in intensity modulated radiation therapy plan and application of predication method

ActiveCN107441637AThoroughly describe anatomical featuresDescribe anatomical featuresX-ray/gamma-ray/particle-irradiation therapyVoxelImage resolution
The invention discloses a predication method for three-dimensional dose distribution in intensity modulated radiation therapy plans. The method includes steps of (1) collecting valid intensity modulated radiation therapy plan data and forming a case database; (2) dividing a PTV and different to-be-endangered organs of patients into a plurality of voxels according to the resolution ratio of CT images; (3) extracting anatomical characteristics of each patient in the database; (4) extracting dose characteristics of each patient in the database; (5) constructing an artificial neural network, inputting the anatomical characteristics and the dose characteristics of the patients, and learning the mapping relation between the anatomical characteristics and the dose characteristics by the aid of the artificial neural network, and obtaining a correlation model of the anatomical characteristics and the dose characteristics; (6) using the correlation model to predicate the three-dimensional dose distribution of a new patient. The application of said method is using the dose distribution predication method for dose prediction for to-be-endangered organs of patients and quality control is achieved. By adopting the above method, predication of three-dimensional dose distribution in intensity modulated radiation therapy plans can be realized and the method can be applied to a quality control link.
Owner:SOUTHERN MEDICAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products