Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

243 results about "Alpha particle" patented technology

Alpha particles, also called alpha ray or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α. The symbol for the alpha particle is α or α²⁺. Because they are identical to helium nuclei, they are also sometimes written as He²⁺ or ⁴₂He²⁺ indicating a helium ion with a +2 charge (missing its two electrons). If the ion gains electrons from its environment, the alpha particle becomes a normal (electrically neutral) helium atom ⁴₂He.

Thermonuclear plasma reactor for rocket thrust and electrical generation

A reactor system produces plasma rocket thrust using alpha-initiated atomic fuel pellets without the need for a critical mass of fissionable material. The fuel pellets include an outer layer reactive material to alpha particles to generate neutrons (e.g., porous lead or beryllium), an under-layer of fissionable material (e.g., thorium or enriched uranium), and an optional inner core of fusion material (e.g., heavy water ice, boron hydride). The pellets are injected one at a time into a charged reaction chamber containing a set of alpha beam channels, possibly doubling as ion accelerators, all directed toward a common point. Alpha particles converging on each successive pellet initiate an atomic reaction in the fissionable under-layer, via a neutron cascade from the pellet outer layer, producing plasma that is confined within the chamber. This may be enhanced by atomic fusion of the optional inner core. The resulting high-energy plasma creates electrostatic pressure on the chamber and is allowed to exit the chamber through a port. An ion accelerator at the exhaust port of the chamber accelerates outgoing plasma ions, possibly with added reaction mass, to generate the rocket thrust. An electric circuit that includes the charged chamber may collect the electrons in the plasma to help power the ion accelerator(s).
Owner:YURASH GREG J

Ultra-low background gas-filled alpha counter

A method and counter for reducing the background counting rate in gas-filled alpha particle counters wherein the counter is constructed in such a manner as to exaggerate the differences in the features in preamplifier pulses generated by collecting the charges in ionization tracks produced by alpha particles emanating from different regions within the counter and then using pulse feature analysis to recognize these differences and so discriminate between different regions of emanation. Thus alpha particles emitted from the sample can then be counted while those emitted from the counter components can be rejected, resulting in very low background counting rates even from large samples. In one embodiment, a multi-wire ionization chamber, different electric fields are created in different regions of the counter and the resultant difference in electron velocities during charge collection allow alpha particles from the sample and counter backwall to be distinguished. In a second embodiment, a parallel-plate ionization chamber, the counter dimensions are adjusted so that charge collection times are much longer for ionization tracks caused by sample source alpha particles than for those caused by anode source alpha particles. In both embodiments a guard electrode can be placed about the anode's perimeter and secondary pulse feature analysis performed on signal pulses output from a preamplifier attached to this guard electrode to further identify and reject alpha particles emanating from the counter's sidewalls in order to further lower the counter's background.
Owner:WARBURTON WILLIAM K

Control of radiation injury

The invention relates to the field of drug development against acute radiation injury caused by exposure to high-energy electromagnetic waves (X-rays, gamma rays) or particles (alpha particles, beta particles, neutrons). To date, there is no effective drug to ameliorate radiation injury after accidental exposure to ionizing irradiation. The invention provides a method of treating radiation injury of a subject in need thereof comprising administering to the subject a peptide, or functional analogue or derivative thereof, of smaller than 30 amino acids. Furthermore, the invention provides use of a peptide, or functional analogue or derivative thereof, of smaller than 30 amino acids for the production of a pharmaceutical composition for the treatment of a subject suffering from or believed to be suffering from radiation injury. In particular, the invention provides anti-radiation peptides having a dose reduction factor (DRF) against acute gamma irradiation of at least 1.10, said DRF determinable by testing which dose of radiation results in 50% mortality at 30 days (LD50/30) after whole body radiation (WBI) in a test group of mice treated with said peptide at 72 hours after WBI and, testing which dose of radiation results in 50% mortality at 30 days (LD50/30) after whole body radiation (WBI) in a control group of mice treated only with the vehicle of said peptide at 72 hours after WBI and wherein the DRF is calculated by dividing the LD50/30 of the peptide-treated animals by the LD50/30 of the vehicle-treated animals.
Owner:BIOTEMPT

Real-time monitoring device for neutron flux in fission reaction

The invention discloses a real-time monitoring device for the neutron flux in a fission reaction. The device is characterized in that a fast neutron conversion body (1), a fluorescent light reflection tube (3), a boron plastic flash body (2), a Cherenkov light reflection tube (5) and a Cherenkov radiation body (4) are arranged in the incident direction of particles in sequence; neutrons and gamma rays enter the boron plastic flash body (2) to interact with substances to generate e+/e-, recoil protons and alpha particles, the e+/e-, the recoil protons and the alpha particles are excited to generate fluorescent light, and the fluorescent light enters a first photoelectric multiplier tube (7) through reflection of the fluorescent light reflection tube (3) and is amplified through an amplifier (10) to obtain neutron and gamma information; after secondary particles enter the Cherenkov radiation body, only e+/e- generates Cherenkov light, and the Cherenkov light is amplified through a second photoelectric multiplier tube to obtain gamma information; two signals are subjected to subtraction to obtain neutron flux information. According to the device, the n and gamma signals are judged in combination with the pulse rise time difference, so that the measurement precision of the pulsed neutron flux is further improved.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products