Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

601 results about "Surface function" patented technology

Method of Manufacturing Transparent Conductive Film Containing Carbon Nanotubes And Binder, And Transparent Conductive Film Manufactured Thereby

This invention relates to a method of manufacturing a transparent conductive film containing carbon nanotubes and a binder, in which the carbon nanotubes are subjected to acid treatment, dispersion in a solvent, mixing with the binder, and application on the substrate, and to a transparent conductive film manufactured thereby. The method includes subjecting carbon nanotubes having an outer diameter of less than 15 nm to acid treatment to thus purify and surface functionalize them, followed by dispersing the treated carbon nanotubes in a solvent along with the binder, or mixing a carbon nanotube solution using a polar or nonpolar solvent with a binder solution, and applying the mixture on the substrate. Through the application of the mixture of treated carbon nanotubes and binder on the substrate, the transparent conductive film has improved transparency, electrical conductivity, dispersibility, substrate adhesiveness, chemical stability, durability and scratch resistance, and can be applied to various substrates, including hard or flexible substrates, thanks to high substrate adhesiveness and applicability. A solution in which the surface functionalized carbon nanotubes are well dispersed is prepared, thus facilitating the manufacture of the film using various materials and generating economic benefits.
Owner:KOREA ELECTROTECH RES INST

Trajectory tracking sliding mode control system and control method for spraying mobile robot

The invention discloses a trajectory tracking sliding mode control method for a spraying mobile robot. The method comprises the following steps of: performing mechanism analysis on a mobile robot, and establishing a mobile robot kinematic model with non-integrity constraint; establishing a controlled object mathematical model of each branch controller of a wheeled mobile robot provided with a motor driving shaft disturbance term; identifying a traveling path by utilizing a computer vision system, and determining an expected motion track of each branch driving motor according to the kinematic model deduced in the previous step; detecting the rotating speed of the motor, calculating the actual motion angular velocity and actual motion angular acceleration of left and right driving motors of the mobile robot, and calculating the deviation and deviation derivative between the expected angular velocity and the actual angular velocity of each driving motor; establishing a sliding mode switching function which meets the speed control requirement of the driving motor; determining the sliding mode controller control quantity of the left and right driving motors of the mobile robot on the basis of the sliding mode surface function s; and respectively transmitting the control quantity of the motor of the mobile robot to the left and right driving motors.
Owner:JIANGSU UNIV

Method for preparing bifunctional modified cellulose adsorbing agent from peanut shells and application of method

The invention discloses a method for preparing a bifunctional modified cellulose adsorbing agent from peanut shells and application of the method. The method comprises the following preparation steps of: washing, drying and crushing waste peanut shells, which are taken as raw materials, and removing flavochrome, hemicellulose and xylogen from the crushed peanut shells so as to obtain peanut shell cellulose; and performing surface functional modification on the materials through substitution and amidation further so as to finally obtain the amino and carboxy bifunctional modified peanut shell cellulose adsorbing material. The product is powdery and light brownish yellow, and the particle size of the product is 1.5-2.5 microns. The bifunctional modified peanut shell cellulose adsorbing material has a good adsorption effect for excessive heavy metals such as copper, chrome and mercury, phosphate, methylthionine chloride dye, and the like in water. The adsorbing agent is simple in preparation method, low in cost, cheap, easily available, good in biological compatibility and environment-friendly, contains a great deal of functional chelation groups, can realize simultaneous adsorption and removal of negative ions and positive ions, and has the advantages of being recyclable and the like.
Owner:NINGBO INST OF TECH ZHEJIANG UNIV ZHEJIANG

Functionalized homogeneous particle porous silicon dioxide microspheres and preparation method and application thereof

The invention discloses functionalized homogeneous particle porous silicon dioxide microspheres and a preparation method and application thereof. The preparation method comprises the following steps of: (1) pre-preparing homogeneous particle porous polymer microspheres with determined components, particle diameters and apertures, and performing surface functionalized treatment on the porous polymer microspheres to obtain the functionalized homogeneous particle porous polymer microspheres; (2) dispersing the functionalized porous polymer microspheres in aqueous solution and adding silicon dioxide precursor to prepare silicon dioxide/polymer intermediate composite microspheres; (3) heating the silicon dioxide/polymer intermediate composite microspheres to remove the polymer to obtain the homogeneous particle porous silicon dioxide microspheres; and (4) performing surface modification on the homogeneous particle porous silicon dioxide microspheres by using a chemical reagent to form a functionalized group, wherein the particle diameter of the functionalized homogeneous particle porous silicon dioxide microspheres is within the range of between 1.7 and 100 microns; and the mesoporous aperture of the functionalized homogeneous particle porous silicon dioxide microspheres is within the range of between 20 and 1,000 angstroms. The functionalized homogeneous particle porous silicon dioxide microspheres can be used as chromatographic filler for efficiently analyzing and separating organic molecules and biological molecules.
Owner:SUZHOU NANOMICRO TECH CO LTD

Graphene/inorganic semiconductor composite film and preparation method thereof

The invention discloses a graphene / inorganic semiconductor composite film and a preparation method thereof. The preparation method includes using graphene oxide or reducing graphene and inorganic semiconductor precursor as major raw materials, using a sol-gel method method or hydrothermal / solvent thermosynthesis method, using a function group on the surface of graphene as a nucleating point, and using the nucleating point to control size, shape and crystallization performance of an inorganic semiconductor to prepare an even composite film. Hydrogen bond, ion bond or covalent bond is formed by the prepared composite film using the function group on the surface of graphene with the inorganic semiconductor, dispersibility between graphene sheets is increased by the inorganic semiconductor, surface defects of graphene are compensated, conductivity and uniformity of graphene are increased, interface geometric contact and energy level matching of graphene and semiconductor nano-particles are improved, application range of a device is enlarged, and the graphene / inorganic semiconductor composite film is suitable for photoelectric fields of solar cells, sensors, OLEDs (organic light emitting diodes), touch screens and the like.
Owner:SHANGHAI JIAO TONG UNIV

Method for latency fingerprint appearance of surface functionalization nano-gold particle

InactiveCN101268946AIdentification information expandedShow clear fingerprintsPreparing sample for investigationPerson identificationSide effectGold particles
The invention belongs to the technical field of trace amount detection, in particular relates to a method that surfaces functionalized nanogold particles are used for potential fingerprint appearance. The invention provides the method that the different surface functionalized nanogold particles (probe) are used for the potential fingerprint appearance. The particles are the hydrophobixated nanogold particles decorated by alkyl hydrosulfide, the hydrophobixated nanogold particles protected by surface active agent cetane trimethyl ammonium bromide (CTAB), the water-soluble nanogold particles protected by the CTAB and the water-soluble nanogold particles protected by L-cysteine respectively. The probe and the ingredients in the residual sweat in the potential fingerprint generate the absorption and static functions or the condensation reaction, then an argentation is utilized to lead potential fingerprint samples to colorate in the argentation liquid, the nanogold particle signals for the ingredient identification in the fingerprint are magnified and the reduced argentum particles deposite at the grain position of the fingerprint samples to further present black, thereby forming the clear fingerprint image that can be observed by naked eyes. The method is simple, fast and high in sensitivity and has no harmful side effects.
Owner:NORTHEAST NORMAL UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products