Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

913 results about "Gold particles" patented technology

Sensor for nano gold particles and preparation method thereof

The invention provides a sensor for nano gold particles and a preparation method thereof. The end surface of a multi-core optical fiber is of a conical-platform structure; a total-reflection film is plated on the surface of the conical platform; the nano gold particles which are distributed regularly are fixed on the end surface of the optical fiber plated with the total-reflection film; exciting light is injected into one fiber core of the multi-core optical fiber, is reflected to the end surface of the optical fiber at the film-plated position of the conical platform and generates total internal reflection on the end surface of the optical fiber, and a generated evanescent field excites a localized surface plasmon resonance effect of the nano gold particles; the reflected light is collected by the fiber core symmetrical to the fiber core injected with the exciting light, and the change of the physical quantity of external substances is sensed by the spectrum of the reflecting light. The sensor and the preparation method have the advantages that the multi-core optical fiber, a self-assembly technology of a near-field optical tweezer and the localized surface plasmon resonance effect of the nano gold particles are combined, and the near-field optical tweezer of the multi-core optical fiber can be utilized for capturing the nano gold particles, so that the optical self-assembly and regular distribution is carried out on the nano gold particles according to the distribution rule of the capturing areas; the structure is simple, the volume is smaller and the repeatability is high.
Owner:HARBIN ENG UNIV

Method for latency fingerprint appearance of surface functionalization nano-gold particle

InactiveCN101268946AIdentification information expandedShow clear fingerprintsPreparing sample for investigationPerson identificationSide effectGold particles
The invention belongs to the technical field of trace amount detection, in particular relates to a method that surfaces functionalized nanogold particles are used for potential fingerprint appearance. The invention provides the method that the different surface functionalized nanogold particles (probe) are used for the potential fingerprint appearance. The particles are the hydrophobixated nanogold particles decorated by alkyl hydrosulfide, the hydrophobixated nanogold particles protected by surface active agent cetane trimethyl ammonium bromide (CTAB), the water-soluble nanogold particles protected by the CTAB and the water-soluble nanogold particles protected by L-cysteine respectively. The probe and the ingredients in the residual sweat in the potential fingerprint generate the absorption and static functions or the condensation reaction, then an argentation is utilized to lead potential fingerprint samples to colorate in the argentation liquid, the nanogold particle signals for the ingredient identification in the fingerprint are magnified and the reduced argentum particles deposite at the grain position of the fingerprint samples to further present black, thereby forming the clear fingerprint image that can be observed by naked eyes. The method is simple, fast and high in sensitivity and has no harmful side effects.
Owner:NORTHEAST NORMAL UNIVERSITY

Nano-gold catalyst supported on combined metal oxide, preparation method and application thereof

The invention provides a nano-gold catalyst supported on combined metal oxide, a preparation method and an application thereof. The preparation method comprises the following steps: preparing layered double hydroxides (LDH) precursor crystal nucleus and dispersing the LDH precursor crystal nucleus into sucrose solution; then adding chloroauric acid solution in the obtained mixture so as to reduce Au3+ in HAuCl4 to Au single substances by using the reduction of glucose and fructose produced by sucrose hydrolysis; in the process of reduction, crystallizing the LDHs so as to obtain solid LDH supported on nano-gold; and carrying out high-temperature roasting on the solid LDH supported on the nano-gold so as to obtain the nano-gold catalyst supported on the combined metal oxide. The combined oxide of the catalyst is taken as a carrier on which the nanosize gold particles is supported, wherein the combined oxide refers to MgO or compound of ZnO and Al2O3, and the mole ratio of the MgO to the compound of ZnO and Al2O3 is 2-6:1; the gold capacity is 0.5 to 3 percent, the size of the gold particle is 8 to 15nm, and the gold particle is ellipsoidal or polyhedral. When the catalyst is used in the catalytic hydrogenation reaction of unsaturated aldehydes, the conversion rate of reactants reaches 60 to 97 percent, and the selectivity of cinnamyl alcohol is 40 to 75 percent.
Owner:BEIJING UNIV OF CHEM TECH

Preparation method of pegylation modified hyperbranched poly(ethylene imine) coated nano-gold particles

The invention relates to a preparation method of pegylation modified hyperbranched poly(ethylene imine) (PEI) coated nano-gold particles, which comprises the following steps: modifying PEI by using mPEG (polyethylene glycol)-COOH, and sequentially carrying out dialysis and freeze-drying on the obtained product so as to obtain PEI-mPEG; taking the solid, dissolving the solid by using water, adding a HAuCl4 solution into the dissolved solid, stirring the obtained product, adding a NaBH4 solution into the obtained product, and carrying out reaction on the obtained mixture at room temperature; and adding triethylamine and acetic anhydride into the obtained object, and after the reaction is completed, carrying out dialysis and freezing on the obtained product so as to obtain pegylation modified hyperbranched polymine coated nano-gold particles. According to the invention, the cheap and easily-obtained PEI is taken as a carrier, so that the cost of materials is reduced; the surface of PEI is modified by using mPEG-COOH, so that the biocompatibility of materials and the colloidal stability of nano-gold particles are improved, and the nano-gold particles are successfully applied to vivo CT (computed tomography) imaging. The method disclosed by the invention is simple in design, mild in reaction conditions and easy to operate, and has an industrialized implementation prospect.
Owner:DONGHUA UNIV +1

Composite membrane modified biosensor and preparation method and application thereof

The invention discloses a composite membrane modified biosensor and preparation and application thereof. The biosensor comprises a matrix electrode, the induction end of the matrix electrode is wrapped with an aromatic diamine polymer membrane, a carbon nano tube-Congo red combination layer is modified on the membrane, and a nano gold particle layer is adsorbed on the combination layer. The preparation method comprises the following steps of: forming the polymer membrane at the induction end of the matrix electrode by electric polymerization reaction; and modifying the carbon nano tube-Congo red combination layer on the membrane, and finally electrically depositing nano gold on the combination layer. The biosensor can be applied in detecting target genes; and during detecting, a probe is first designed, then a capture probe is modified, and whether the target genes are contained in hybridization solution to be detected and the concentration of the target genes can be judged by first and second hybridization and enzyme catalytic reaction. The biosensor has the advantages of good electric conductivity, good biocompatibility, high sensitivity, storing anti-interference performance, good selectivity, low manufacturing cost and the like.
Owner:HUNAN UNIV

Nano probe based method for detecting trace proteins by using microfluidic chip

The invention relates to a nano probe based method for detecting trace proteins by using a microfluidic chip, which is characterized by comprising the steps: manufacturing a microstructure by using a standard photoetching process, and sealing a glass sheet (spotted with a DNA (deoxyribonucleic acid) probe) and the microstructure to prepare a required microfluidic chip; simultaneously labeling a monoclonal secondary antibody and a Barcode DNA with a signal amplification function on a nano gold particle, and labeling a monoclonal primary antibody on a magnetic bead; and detecting the trace target proteins in a microfluidic chip channel by means of immunoreaction of antigens and antibodies as well as gradual amplification and silver staining development of signals. The nano probe based method provided by the invention integrates the procedures of enrichment, separation and detection of biological samples, has the characteristics of specificity, rapidness and high sensitivity, and is expected to be applied to the diagnosis and detection of trace proteins (the antigens or antibodies) in clinical laboratory medicine. The sensitivity can reach a pg/ml level and is improved by 1000 times compared with the common ELISA (enzyme-linked immunosorbent assay) method in clinical application.
Owner:SHANGHAI INST OF MICROSYSTEM & INFORMATION TECH CHINESE ACAD OF SCI

Method for producing film metal fine device on PDMS surface

The invention provides a method for preparing a film metal micro device on the surface of PDMS by chemical plating. The method comprises: a layer of polyacrylic acid (PAA) is selectively grafted to be formed on a designated area of the surface of PDMS through the photochemical reaction by adopting photolithographic masks; after a series of surface chemical reactions such as amination, absorption, reduction and the like, a nano-scale gold particle catalytic center required by chemical plating is formed in an area irradiated by UV light; finally, by selectively carrying out chemical plating on metal by means of nano-gold catalysis, the metal film device is formed on the surface of the PDMS irradiated by the UV light. By the method, the integrated metal film is prepared on the surface of the PDMS sheet and on the inner surface of the channel / cavity of the PDMS in order to prepare such micro devices as a micro-heater, a microelectrode, a microsensor, a micro shielding device and the like, which take the PDMS as a substrate, and to integrate circuits. The method is characterized in that the process is simple and easy to practice and clean laboratories and high-cost metal evaporation and deposition processes are unnecessary. The prepared metal device has the advantages of high accuracy and low cost.
Owner:ZHEJIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products