Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3115 results about "Chemical plating" patented technology

Plating chemicals and anodizing chemicals include metal salts, formula additives, and other consumables for the electrodeposition, electroless plating, electroplating, or anodized layer formation. Electrodeposition is a process which deposits a metal at the cathode from a solution of its ions.

Catalyst for hydrogen production by catalyzing and hydrolyzing borohydride and preparation method thereof

The invention relates to hydrogen production and hydrogen storage technologies and materials, in particular to a catalyst for catalytic hydrolysis of borane for the hydrogen production and a preparation method thereof, thereby solving the problems that the direct application of powder catalyst in a catalytic hydrolysis solid-liquid reaction system can cause the loss of the catalyst, the catalytic hydrolysis reaction is difficult to control and the hydrolysis by-products are difficult to be recovered, etc. The catalyst is composed of an active component and a carrier; the active component is a binary, ternary or multinary alloy or a single precious metal or the combination thereof which is composed of one or more transition metals, rare earth metals or precious metals and metalloids; the active component is deposited on the carrier through the improved chemical plating technology, the surface thereof is rough and porous, and the structure of the prepared catalyst is the amorphous or the nanocrystalline structure. The preparation method has simple preparation process, high preparation efficiency and convenient large-scale preparation; the sources of the used raw materials are rich; the catalytic activity of the prepared supported catalyst is high, the real-time control of the catalytic hydrolysis reaction of the borane can be realized, the catalytic performance is stable, and the catalyst can be repeatedly used for a plurality of times.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Quick high-flexibility manufacturing method for ceramic circuit board

A quick high-flexibility manufacturing method for a ceramic circuit board comprises the following steps: irradiating laser on the surface of a ceramic matrix, and controlling the energy density of the laser to reach above the fracture threshold of the chemical bond of the compound containing active ions, so that chemical reaction occurs on the surface of the ceramic matrix, an active substance is separated out to serve as a chemical plating catalytic source, and the active substrate generated by the reaction and the matrix form chemical metallurgical bonding, wherein different laser sources are selected aiming at different ceramic materials according to the chemical bond energy of the ceramic material components, and the laser energy is controlled to reach the ceramic modified threshold by controlling the average power of laser output, pulse repetition frequency, scanning speed, defocusing amount, space between scanning line and scanning times; and the ceramic matrix modified by the laser is placed into a chemical plating solution to perform plating to form a metal coating. The surface of the ceramic is modified by the laser, so that a metal conductive layer and the matrix form chemical metallurgical bonding, the bonding force of the circuit board is greatly increased, and the heat-conducting property and the electric property are improved.
Owner:SHENZHEN SUNSHINE LASER & ELECTRONICS TECH CO LTD

Low-silver-loaded electromagnetic wave shielding fabric preparation method

The invention belongs to the technical field of electromagnetic wave shielding material and relates to a low-silver-loaded electromagnetic wave shielding fabric preparation method, comprising the following specific steps: modifying the surface of polyester fabric, introducing an active group--sulphydryl under the premise of not increasing the surface area of the fabric, and then plating silver with ultrasonic wave; wherein, Ag-S chemical bond is formed between sulphydryl and silver so that the compactness of the silver coating and the adhesion force of the fabric substrate are increased; in the process of chemical plating, fresh plating solution is always on the surface of the fabric and the materials which are absorbed on the surface of the fabric through physical adsorption are removed timely owning to the action of ultrasonic wave so that the continuity and compactness of the silver coating can be improved further; the silver loading content of the prepared silver-loaded electromagnetic wave shielding fabric is 6.7-7.0% by weight; the fabric is more resistant to the corrosion of the air and water, the electromagnetic shielding effectiveness is more than 32dB in the range of 0.01-18GHz, namely the anti-electromagnetic radiation rate is more than 99.9%; the fabric can be widely used in electromagnetic wave antiradiation clothes and in the field of electromagnetic wave shielding for special departments such as military, national defense and the like.
Owner:FUDAN UNIV

Surface enhanced raman detection test paper and application thereof

The invention relates to a piece of surface enhanced raman detection test paper and the application thereof, which belong to the technical field of ultra-sensitive test analysis, in particular to the piece of surface enhanced raman detection test paper and the application of the paper to detection of biological or chemical probe molecules with raman signals. The surface enhanced raman detection test paper is obtained by covering a precious metal layer on the surface of paper with a natural fiber micro nano multi-grade structure through the physical vapor deposition or chemical plating technology, the paper can be filter paper, parchment paper, napkin, newspaper or printing paper and the like, the precious metal film is gold or silver and the like, and the thickness of the precious metal film is 5 nanometers to 90 nanometers. Combined action of size, period and roughness enables incident light to generate a local electric field on the surface of a multi-stage structure and enables the electric field to be enhanced, and the detection limit can reach 10-10mol/L. The test paper has the advantages of being good in flexibility, low in cost, free of environment pollution, capable of being prepared in batch and the like, thereby being capable of being used in detection of probe molecules such as rhodamine 6G, p-aminothiophenol, riboflavin or ethanol and the like.
Owner:JILIN UNIV

Method for performing electroless nickel plating on surface of aluminum nitride ceramic

The invention provides a method for performing electroless nickel plating on the surface of aluminum nitride ceramic, belonging to the ceramic thin-film metallization field. The method comprises the following specific steps: 1) polishing the surface of aluminum nitride with a machinery; coarsening the aluminum nitride substrate with mixed acid or alkali, completely cleaning away the residual acid or alkali; 3) sensitizing the coarsened substrate in stannous chloride solution, activating in palladium chloride solution or performing activation without palladium; 4) weighting a certain amount of nickel sulphate, sodium hypophosphite, sodium citrate, sodium acetate, lactic acid, thiourea and sodium dodecyl sulfate in sequence to prepare a chemical plating solution; and 5) adjusting the pH value of the solution to 4.0-6.0 with acid or alkali, heating the solution to 70-95 DEG C, and placing the prepared substrate in the solution to perform electroless nickel plating. The invention is characterized in that the electroless nickel plating can be performed on the surface of the aluminum nitride ceramic substrate which is difficult to plate; and a certain amount of surfactant is added so that the plating becomes denser and smoother, the binding force between the plating and the substrate is increased, and the solderability of the plating is better.
Owner:UNIV OF SCI & TECH BEIJING

Manufacturing and repairing method for conductive circuit of three dimensional mold interconnecting device

The invention discloses a method for manufacturing and repairing a three-dimensional molding interconnection device conductive line. The method comprises the following steps: (1) depositing a 0.1-50 micrometer thick prearranged sizing agent layer of a conductive sizing agent on the surface of a molding structural element according to the design configuration of a conductive line; (2) baking or airing the prearranged layer of the conductive sizing agent, and removing an organic solvent thereof; (3) utilizing a laser beam to irradiate the prearranged sizing agent layer so as to enable metal conductive particles in the sizing agent to be melted and mixed with a 5-500mum thin layer of the surface of a plastic matrix, and the metal conductive particles in the sizing agent to be embedded in the surface of the matrix, thereby obtaining a conductive pattern; and (4) conducting chemical plating of 2-10mum copper on the surface of the conductive pattern, and then conducting chemical plating of 1-3mum anticorrosion metal. By the method, various complex conductive lines can be quickly and directly manufactured or repaired on the surface of three-dimensional molding structural member of various plastic matrix. No platability is required for base materials or no special requirement is needed for the molding technical. The invention has the advantages of simple process, environment-friendliness, low cost and high flexibility.
Owner:WUHAN XINRUIDA LASER ENG

Chemical nickel-plating method for carbon fiber

The invention discloses a chemical nickel-plating method for carbon fiber, which is designed for overcoming the disadvantages of high cost, a large number of process steps and poor operability existing in the prior art. In the method, a chemical plating process is adopted; and a pre-treatment is performed on a raw material and chemical plating solution is prepared before the chemical plating. The pre-treatment process comprises the steps of: calcining by using a muffle furnace to remove glue; soaking in solution of absolute ethanol to remove oil; performing surface roughening and activating treatment by using solution of sodium hydroxide and solution of silver ammonia; sensitizing by using a sensitizer, namely stannous chloride; and performing surface reduction by using solution of sodium hypophosphite. The chemical plating solution consists of nickel sulfate hexahydrate, sodium hypophosphite, sodium pyrophosphate and sodium citrate. The chemical nickel-plating on the carbon fiber is finished by placing a pre-treatment product of the chemical plating into the chemical plating solution, and reacting, standing, filtering and drying under a chemical plating condition. The method has the characteristics that: the product has a uniform surface, a compact plating layer and uniform particles.
Owner:沈阳临德陶瓷研发有限公司

Surface chemical metal plating carbon nanotube field-emission cathode preparation method

The invention provides a surface chemical metal plating carbon nanotube field-emission cathode preparation method, which belongs to a carbon nanotube field emission cathode technology, solves the shortcomings of the existing technology, improves the electronic conduction and emission capabilities of the carbon nanotube and enhances the contact between a carbon nanotube film and a substrate electrode. The preparation method comprises the following steps: the carbon nanotube is processed through purification, cutting, scattering, and then through sensitization and activation, the carbon nanotubesurface forms a noble metal catalytic center; then the carbon nanotube surface forms a metal layer through a chemical plating method, the surface chemical metal plating carbon nanotube is prepared into evenly and stably dispersed carbon nanotube electrophoresis liquid, and finally pulse electrophoresis deposition is used for preparing the cathode of the carbon nanotube. The surface chemical metalplating carbon nanotube has good electronic conduction and emission capabilities, the carbon nanotube field-emission cathode and a substrate electrode can form good attachment, and the invention canrealize large-area, imaging and uniform preparation for the carbon nanotube field-emission cathode.
Owner:FUZHOU UNIV

Electroplating and chemical plating composite protecting process for NdFeB permanent magnet and NdFeB permanent magnet with composite protective layer

The invention provides an electroplating and chemical plating composite protecting process for an NdFeB permanent magnet and the NdFeB permanent magnet with a composite protective layer, relating to the surface treatment protecting process for the NdFeB permanent magnet. The invention aims at providing the NdFeB permanent magnet electroplating and chemical plating composite protecting process and the NdFeB permanent magnet with the composite protective layer with high production efficiency and good corrosion resistance. The electroplating and chemical plating composite protecting process for the NdFeB permanent magnet comprises the following steps: (1) pre-treatment: the NdFeB permanent magnet is subjected to oil removal, dust removal and surface activation; (2) electroplating: the surface of the NdFeB permanent magnet is electroplated; (3) transitional treatment: the electroplated NdFeB permanent magnet is subjected to water cleaning and surface activation; (4) chemical plating: nickel is plated chemically outside the electroplating layer of the NdFeB permanent magnet; and (5) post-treatment: the chemically plated NdFeB permanent magnet is subjected to water cleaning, surface adjustment and drying.
Owner:YANTAI ZHENGHAI MAGNETIC MATERIAL CO LTD

Method of manufacturing vacuum composite film coating on surface of neodymium iron boron magnet

The invention relates to the technical filed of vacuum plating, in particular to a preparation method for conducting vacuum compound plating on the surface of a neodymium iron boron magnet, which is characterized in that the preparation method comprises the following steps: A. pre-treatment, the mixed liquor of washing liquid and purified water is used for conducting oil removal and parting medium washing to the magnet surface in an ultrasonic wave cleaner; B. ion cleaning and activation, the pre-treated neodymium iron boron magnet which is dried at 80-100 DEG C for 5-10 minutes undergoes bombardment activation of a glow plasma in vacuum environment, so as to increase surface activation energy; and C. vacuum plating, vacuum plating treatment is conducted to the neodymium iron boron magnet washed by ions in a vacuum chamber, and a metal plating is prepared on the surface. The deposited metal film on the surface of the neodymium iron boron magnet has the advantages of good stability, high bonding force and tightness, stronger anti-corrosion performance in cold and hot alternation environment. Furthermore, in the physical vapor deposition plating process, the plating thickness is affected much less by the magnet workpiece corner than in electroplating and chemical plating, and the pollution problem is avoided in the preparation process.
Owner:兰州大成科技股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products