Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

2824 results about "Self-assembly" patented technology

Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the constitutive components are molecules, the process is termed molecular self-assembly.

Special micro-fluidic chip for cholera diagnosis with one-dimensional self-assembly magnetic bead chain electrodes

The invention relates to a special micro-fluidic chip for cholera diagnosis with one-dimensional self-assembly magnetic bead chain electrodes, belonging to the field of testing. Rapid diagnosis of fulminating infectious disease cholera with low cost is one of many expectations in the development of medical technology, and the invention provides a micro-fluidic chip for simultaneously detecting and rapidly diagnosing cholera by using multiple characteristic antibodies of cholera. The chip is provided with three micro liquid storage tanks, and the invention is characterized in that capillary passages in parallel configuration contain in the chip, the parallel configuration contains four micro-passages that are mutually in parallel, four magnetic bead chain working electrodes are respectively installed inside the four micro-passages, the surface substances of the four magnetic bead chain working electrodes are respectively four antibody substances that are cholera TP0821 antibody, cholera TP0319 antibody, cholera TP0624 antibody and cholera O139 mycoprotein antibody. The integrated structure and the appearances of specific magnetic bead chain working electrodes facilitate to improve the diagnosis efficiency of cholera diseases.

Integrated nanomechanical sensor array chips

The invention provides sensor, preferably biosensor devices and method of fabrication. The devices have significant advantages over the prior art methods having compatibility with future trends in clinical diagnostics and chemical detection. The underlying principle involves the integration of nanometer diameter, micron long metal or semiconductor rods onto a substrate to form a suspended nanomechanical cantilevers. The cantilever rods are rigidly attached to the substrate on one or both ends, and resonate at a characteristic frequency depending on the diameter, length, and stiffness of the rod. The metal or semiconductor rods are integrated onto the substrate using electrofluidic or fluidic assembly techniques. A receptor coating is placed on the metal or semiconductor rods prior to or following rod alignment using self-assembly chemistries. Sensing is accomplished when the target agent binds to the receptor substance, causing a change in the mass of the cantilever rod, and a corresponding change in the resonant frequency. This change in resonant frequency can be detected using an electrical readout. The sensing circuitry is integrated with CMOS or TFT technologies to form compact multi-analyte senor arrays on single crystal silicon, glass, or polymeric substrates. Circuits can also be included on the substrate to transmit the array data via wireless methods to a remote workstation for analysis. Devices may be integrated on chips with other analysis devices.

High-performance two-dimensional layered Ti3C2-MXene membrane, preparation method thereof and application of membrane in water treatment

The invention belongs to the technical field of membrane preparation and water purification and discloses a high-performance two-dimensional layered Ti3C2-MXene membrane, a preparation method thereof and an application of the Ti3C2-MXene membrane in water treatment. The method comprises steps as follows: (1), Ti3AlC2 powder and an HF solution are mixed, stirred for a reaction, centrifugally washed and dried, and Ti3C2 powder is obtained; (2), the Ti3C2 powder and a solvent are mixed, stirred for the reaction, washed and dried, and treated powder is obtained; (3), the treated powder is dissolved in the solvent and subjected to ultrasonic treatment and centrifugation, a liquid supernatant is taken and dried, and a two-dimensional nanosheet is obtained; (4), a solution is prepared from the two-dimensional nanosheet and deposited on a porous substrate with a nano self-assembly technology, and the high-performance two-dimensional layered Ti3C2-MXene membrane is obtained. The membrane has ultrahigh water flux, higher selectivity and good mechanical property and stability; the method is simple, low in energy consumption and cost, good in repeatability and wide in applicability.

Method for constructing anti-reflection microstructure using single layer nanometer particle as etching blocking layer

The invention belongs to the surface patterning microstructure construction technique, which relates to a method for constructing a microstructure with anti-reflection performance on a foundation base by combining the self-assembly technique with the reactive ion beam etching technique. The method is to take monolayer polymeric micro-spheres, silicon dioxide micro-spheres and nano-particles of metal or metal oxides as a barrier layer and implement the RIE etching to the foundation base, then an approximate cone-shaped microstructure is constructed on the foundation base, and the structure has extreme high anti-reflection performance, thereby effectively improving the light energy utilization rate, reducing the interference of veiling glare in an optical system, increasing the optical transmittance, and further improving the sensitivity and stability of the optical system, and the method can be used for constructing large-area anti-reflection structures. The method of the invention has advantages of simple operation, changeable foundation base, strong applicability, good repeatability, low cost, high efficiency, adjustable anti-reflective applied wavelength and conformity to industrialized standards, and can be used for making photoelectric devices such as solar batteries and white light sensors.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products