Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

461results about How to "Change surface properties" patented technology

Double polar plates for fuel battery and method for making surface azote chromium thin film

The invention provides a bipolar plate for fuel cell and a surface nitric-chrome film preparation method which belong to fuel cell technique field. The bipolar plate is composed of a stainless steel thin plate substrate and its two sides nitric-chrome film; the nitric-chrome film thickness is micro-nanometer magnitude and is prepared by using electric arc ion filming method, therein, substrate passive film is removed by using ion sputtering method before filming, used ion comes from glow plasma of inert gases or electric arc plasma vaporized from metal target; a simple substance film with even component, a grads film with component changed continuously from inside to outside, or a multi-layer film with component changed alternately can be obtained by controlling filming parameter in film depositing process. The substrate provided by the invention is the stainless steel thin plate, and has a nitric-chrome film on surface. The stainless steel thin plate and intric-chrome film match connects in atom dimension because of ion film depositing, thereby, the bipolar plate has characteristics of low-cost besides complex characteristics, for example, corrosion resistance, electrical conduction, strengthen and hydrophobic etc. The bipolar plate and preparation method are mainly suitable for fuel cell manufacturing field.
Owner:DALIAN UNIV OF TECH

Double polar plates for fuel battery and method for making surface carbon chromium thin film

The invention provides a bipolar plate for fuel cell and a surface carbon-chrome film preparation method which belong to fuel cell technique field. The bipolar plate is composed of a stainless steel thin plate substrate and its two sides carbon-chrome film; the carbon-chrome film thickness is micro-nanometer magnitude and is prepared by using electric arc ion filming method, therein, substrate passive film is removed by using ion sputtering method before filming, used ion comes from glow plasma of inert gases or electric arc plasma vaporized from metal target; a simple substance film with even component, a grads film with component changed continuously from inside to outside can be obtained by controlling filming parameter in film depositing process. The substrate provided by the invention is the stainless steel thin plate, and has a nitric-chrome film on surface. The stainless steel thin plate and carbon-chrome film match connects in atom dimension because of ion film depositing, thereby, the bipolar plate has characteristics of low-cost besides complex characteristics, for example, corrosion resistance, electrical conduction, strengthen and hydrophobic etc. The bipolar plate and preparation method are mainly suitable for fuel cell manufacturing field.
Owner:CHANGZHOU INST OF DALIAN UNIV OF TECH

Bipolar plate of fuel cell and method for preparing carbon titanium nanocomposite film on surface thereof

The invention discloses a bipolar plate of a fuel cell and a method for preparing a carbon titanium nanocomposite film on the surface thereof, belongs to the technical field of surface modification of metallic materials and fuel cells, and relates to a bipolar plate of a regenerative fuel cell and a proton exchange membrane fuel cell and a preparation technology of a surface modified film of the bipolar plate. The bipolar plate consists of a metal thin plate substrate and carbon titanium nanocomposite films which are formed on the surfaces at two sides of the substrate, wherein the metal thin plate substrate is a titanium plate and a stainless steel plate; the carbon titanium nanocomposite film is an amorphous and nanocrystalline composite film which is prepared on an amorphous carbon substrate with an arc ion film plating method and on which titanium and titanium carbide nanocrystals are distributed; the thickness of the film is of micron dimension; and the size of the crystal grains of the nanocrystals is of micron dimension. The invention has the effects and advantages that: the bipolar plate is low in manufacturing cost, has prominent composite performance such as corrosion resistance, conductivity, hydrophobicity and the like, can be used for replacing a noble metal bipolar plate and a graphite bipolar plate, and can be used as a cell bipolar plate of the proton exchange membrane fuel cell and an electrolytic cell bipolar plate of the regenerative fuel cell.
Owner:DALIAN UNIV OF TECH

Bottom surface-integrated wear-resistant fluorosilicone-based super-amphiphobic coating, and preparation method and application thereof

The invention discloses a bottom surface-integrated wear-resistant fluorosilicone-based super-amphiphobic coating, and a preparation method and application thereof. The preparation method comprises the following steps: 1) performing synergistic modification treatment on two or more nanoparticles to obtain modified blended particles; 2) adding the blended modified particles into a dispersing solvent, performing ultrasonic dispersion for 1 to 2 hours and then mechanically stirring; 3) adding a certain amount of tert-butyl acetate into fluoro-siloxane resin and performing shearing dispersion to obtain substrate material emulsion; 4) mixing the blended modified particle turbid liquid in the step 2 and the substrate material emulsion in the step 3, adding a coupling agent, heating, stirring anddispersing, and performing dispersion by a high-speed shearing dispersing machine to obtain super-amphiphobic coating; and 5) stirring the super-amphiphobic coating uniformly, spray-coating the surface of an object with the super-amphiphobic coating and drying at room temperature for 10 to 30 minutes to successfully prepare the wear-resistant integrated super-amphiphobic coating. The wear-resistant super-amphiphobic organic-inorganic hybrid coating is obtained by connecting a fluorine-silicon substrate and the blended modified particles through chemical grafting copolymerization reaction.
Owner:ELECTRIC POWER RESEARCH INSTITUTE OF STATE GRID SHANDONG ELECTRIC POWER COMPANY +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products