Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2752 results about "Titanium powder" patented technology

Titanium powder metallurgy (P/M) offers the possibility of creating net shape or near net shape parts without the material loss and cost associated with having to machine intricate components from wrought billet. Powders can be produced by the blended elemental technique or by pre-alloying and then consolidated by metal injection moulding, hot isostatic pressing, direct powder rolling or laser engineered net shaping.

Device and method for preparing spherical titanium powder and titanium alloy powder through gas atomization

The invention relates to a device and method for preparing spherical titanium powder and titanium alloy powder through gas atomization, which belongs to the field of powder metallurgy industry. The device comprises a vacuum chamber, a continuous feeder for titanium or titanium alloy wires/rods is arranged outside the vacuum chamber, a dynamic sealing device is arranged at the top of the vacuum chamber, a metal straightening device is arranged inside the vacuum chamber, an atomizing chamber is arranged below the vacuum chamber, a gas atomization nozzle is installed between the atomizing chamber and the vacuum chamber, the center hole of the nozzle is internally provided with a wire/rod guiding device, a high-frequency smelting coil is installed below the nozzle, wherein the dynamic sealing device, the straightening device, the guiding device and the high-frequency smelting coil are installed on the same axis; a heat dissipation cover is installed inside the atomizing chamber, a protective cover is arranged at the top of the heat dissipation cover, and the centers of the heat dissipation cover and protective cover and the center of the high-frequency smelting coil are on the same axis; a powder collecting pot is arranged below the atomizing chamber. By means of controlling the diameters of the wires, the atomizing gas pressure and the power of a high-frequency power supply, titanium and titanium alloy powder with different particle sizes and particle size distributions can be obtained.
Owner:有研增材技术有限公司

Refractory high-entropy alloy/titanium carbide composite and preparation method thereof

The invention discloses a refractory high-entropy alloy/titanium carbide composite. A refractory high-entropy alloy serves as a matrix phase, and titanium carbide serves as a wild phase; and elements in the refractory high-entropy alloy are selected from at least four kinds of elements of W, Mo, Ta, Nb, V, Ti, Zr, Hf and Cr. A preparation method of the refractory high-entropy alloy/titanium carbide composite comprises the steps that at least four kinds of carbonization metal powder in tungsten carbide, molybdenum carbide, tantalum carbide, niobium carbide, vanadium carbide, the titanium carbide, hafnium carbide, zirconium carbide and chromium carbide are selected and mixed according to the equal molar ratio or the ratio close to the equal molar ratio to form high-entropy matrix powder; and after the high-entropy matrix powder and titanium powder are mixed, alloy mechanization is carried out, then spark plasma sintering or hot-press sintering is carried out, and the refractory high-entropy alloy/titanium carbide composite is obtained. The density and cost of the composite are reduced while the hardness of the composite is improved, excellent high-temperature performance is achieved, and the requirement for manufacturing a high-temperature structural component is met.
Owner:江西咏泰粉末冶金有限公司

Manufacturing method of micro spherical titanium and titanium alloy powder

ActiveCN104475743AFast purification smeltingControlled purification smeltingSpherical shapedTitanium alloy
The invention relates to a manufacturing method of micro spherical titanium and titanium alloy powder, and belongs to the technical field of metal and alloy powder manufacturing. The manufacturing method comprises the steps that a titanium and titanium alloy wire or bar is manufactured by using sponge titanium in the national standard TA1 grade as a raw material; forvacuum treatment is conducted on a powder manufacturing device, and then the powder manufacturing device is filled with inert protective gas; the raw material wire or bar is fed into a smelting chamber through a continuous feeding mechanism and a straightener, the raw material is heated and smelted through a high-frequency induction coil, and the alloy raw material is molten to form stable liquid flow or drip flow; supersonic atomizing nozzles in atomizers are opened, and breakage, dispersion and forced cooling powder manufacturing are conducted on the molten liquid flow or the drip flow; powder is obtained through a powder collector, and is screened through an ultrasonic vibrating screen to obtain the micro spherical titanium and titanium alloy powder. The micro spherical titanium and titanium alloy powder manufactured through the manufacturing method is small in particle size, high in degree of sphericity, good in liquidity and low in impurity content, and has smooth surfaces.
Owner:有研增材技术有限公司

Short-flow preparation method of micro-sized spherical titanium powder

The invention provides a short-flow preparation method of micro-sized spherical titanium powder, which belongs to the technical field of powder preparation. The hydrogenation-dehydrogenation technique and the radio frequency plasma body fusion spheroidization technique are integrated, and the titanium hydride powder is selected as raw material; the titanium hydride powder absorbs heat in the high-temperature plasma and quickly decomposes and dehydrogenates, and the titanium hydride power is cracked and crushed in the process of dehydrogenation to produce the micro-sized titanium powder. By using the method, the processes of the dehydrogenation and the spheroidization of the generated titanium powder are finished in one step directly through the plasma processing, and the short-flow preparation of the micro-sized spherical titanium powder is realized. The invention has the advantages that the hydrogenation-dehydrogenation technique and the radio frequency plasma fusion spheroidization technique are combined, so as to shorten the production flow, enhance the production efficiency and reduce the production cost. Simultaneously, the prepared spherical titanium power has fine and even particles, good liquidity, high sphericity and low oxygen content, thereby the requirements of technical industrial production such as the injection figuration, the gel die casting figuration, and the like are satisfied.
Owner:江苏金物新材料有限公司

Powder metallurgy titanium alloy and preparation method thereof

The invention provides powder metallurgy titanium alloy and a preparation method thereof. The powder metallurgy titanium alloy comprises the following components in percentage by mass: 2 to 7 percent of Al, 2 to 8 percent of Mo, 2 to 6 percent of V, 2 to 10 percent of Ag, 0.1 to 3.0 percent of LaB6 and the balance of titanium and inevitable impurities. The method comprises the following steps of: weighing titanium powder, aluminum powder, molybdenum powder, aluminum-vanadium intermediate alloy powder, silver powder and lanthanum hexaboride powder with certain particle size according to the mass percentage of the components; uniformly mixing the powder by a mixing method; preparing a green compact with a certain shape by a compression molding process; placing the green compact in a vacuum hot pressing sintering furnace to sinter; and cooling the green compact along with the furnace to obtain silver and titanium boride particle-containing powder metallurgy titanium alloy. The technological process is simple; the silver powder is added during the mixing of the materials to improve the molding property of the green compact; the lanthanum hexaboride powder is added to perform reaction in situ so as to generate titanium boride dispersion enhanced matrix alloy; the compactness of the sinter compact is further improved by hot pressing sintering; and thus the novel powder metallurgy titanium alloy with high compactness and high strength is obtained.
Owner:CENT SOUTH UNIV

Preparation method of medical porous titanium and titanium alloy

The invention discloses a preparation method of medical porous titanium and titanium alloy, which comprises the following steps: proportionally preparing titanium powder, alloy element powder and pore forming agent powder according to needs; carrying out ball milling, mixing and mechanical pressing by a powder metallurgy blank making technique to obtain a blank; putting the blank in a thermal insulation barrel, and putting the thermal insulation barrel into a microwave sintering furnace; and after vacuumizing the furnace chamber to a vacuum degree of 0.1Pa, charging argon with the purity of 99.999% to form cyclic protection, controlling the output power of the microwave sintering furnace at 0.5-3kW, heating to the sintering temperature of 800-1200 DEG C at the heating rate of 5-40 DEG C/minute, keeping the temperature for 5-30 minutes, shutting down the microwave source, and carrying out furnace cooling to obtain the medical porous titanium and titanium alloy. The invention has the advantages of simple preparation method, short sintering period, high efficiency, low sintering temperature and low energy consumption; and the sintered porous titanium and titanium alloy have excellent mechanical properties, and can be used as alternate repair material for bones, joints, artificial radix dentis and other hard tissues.
Owner:HUAIYIN INSTITUTE OF TECHNOLOGY

Plasma atomization method and apparatus for preparing pure titanium or titanium alloy powder

The invention relates to a plasma atomization method and apparatus for preparing spherical pure titanium or titanium alloy powder, and belongs to the technical field of preparation of titanium or titanium alloy powder. The plasma atomization method for preparing pure titanium or titanium alloy powder comprises the following steps of (1) preparing a titanium wire or titanium alloy wire with the diameter ranging from 3 millimeters to 20 millimeters, (2) using a plasma torch to fuse and atomize the titanium wire or titanium alloy wire in an atomization bin with an argon atmosphere to obtain atomized pure titanium particles or titanium alloy particles, and (3) feeding argon flow with the temperature ranging from 300 DEG C to 500 DEG C into the atomization bin, carrying out laminar cooling on the atomized pure titanium particles or titanium alloy particles to obtain pure titanium or titanium alloy powder. The obtained powder is good in degree of sphericity and low in the content of satellite balls, and has the advantages of being uniform in size distribution, high in purity and degree of sphericity, good in liquidity, low in oxygen content and impurity content, free of bond or cluster phenomenon and the like. The prepared titanium powder can be widely applied to the forming manners such as metal additive manufacturing, powder injection moulding and hot isostatic pressing for manufacturing parts with high precision.
Owner:OPTIMAL MATERIAL TECH CO LTD

Pure titanium powder forming method based on selected area laser melting technology

The invention discloses a pure titanium powder forming method based on a selected area laser melting technology. The method comprises the steps that A. an optimizing comparison method is used for obtaining the optimum machining parameters of pure titanium powder forming; B. a three-dimensional model of a part structure which needs to be manufactured is established; C. the established three-dimensional model is subjected to layering preprocessing; D. the obtained optimum machining parameters are used as 3D printing parameters, the three-dimensional model after layering preprocessing is subjected to layering processing, and accordingly printing files needed by 3D printing are generated; and E. the generated printing files are guided into 3D printing equipment, and pure titanium powder is used as forming materials for 3D printing. The method is based on the selected area laser melting technology, metal parts of various structures can be accurately manufactured according to practical needs, the optimizing comparison method is used for obtaining the optimum machining parameters of pure titanium powder forming, different optimum machining parameters can be set according to practically-needed mechanical property situations, flexibility is high, and dynamic performance is good. The pure titanium powder forming method can be widely used in the field of automation control.
Owner:GUANGZHOU INST OF ADVANCED TECH CHINESE ACAD OF SCI

Biomedical porous pure-titanium implant material and preparation method thereof

The invention discloses a preparation method of a biomedical porous pure-titanium implant material. The method comprises the steps of S1, constructing a three-dimensional model of the implant material through drawing software, slicing through layering software, conveying the obtained two-dimensional section information to a computer control system of an SLM former, and providing a laser scanning route; S2, paving a layer of titanium powder being 30 to 70 microns in thickness on a workbench of the SLM former through a powder paving layer; S3, performing selective laser meting for the titanium powder through a laser beam under the conditions that the power is 90 to 100W, the scanning spacing is 0.10 to 0.20mm, and the scanning speed is 275 to 540mm/s to obtain a layer of sections of the implant material, and synchronously lowering down the worktable in a distance equal to the height of a layer of powder; S4, repeating the steps 2 and 3 until the three-dimensional model of the implant material is formed; S5, automatically stopping working by the SLM former, cooling the three-dimensional model to reach room temperature, then performing sand blasting to obtain the porous pure-titanium implant material; the three-dimensional model is a porous structural mode using a tetrakaidecahedron unit as a dot matrix and formed by repeatedly accumulating the tetrakaidecahedron units.
Owner:GUANGZHOU INST OF ADVANCED TECH CHINESE ACAD OF SCI

Selective laser melting forming method for preparing titanium alloy component

The invention provides a selective laser melting forming method for preparing a titanium alloy component. The method comprises the steps as follows: firstly, after being subjected to ball-milling and mixing, titanium alloy powder is delivered to a selective laser melting quick forming device, and the titanium alloy component is formed according to a component CAD image imported into the selective laser melting quick forming device; secondly, during a forming process, a mixture of 35-45% of nitrogen and 55-65% of argon is input by the flow rate of 3-5 liter per minute at the same time, a self-propagating high-temperature synthetic reaction is performed on the titanium and the nitrogen under the temperature ranging from 1220 DEG C to 1480 DEG C so as to generate titanium nitride, and titanium carbide is generated through the reaction of the titanium and the carbon in graphite under the temperature ranging from 1260 DEG C to 1523 DEG C under the argon condition; thirdly, the titanium nitride and the titanium carbide generated from the reactions are melted with the titanium alloy component as an organic whole; fourthly, the formed titanium alloy component is subjected to segmental cooling. Through adopting the technical scheme of the method, the generated titanium alloy component has better abrasive resistance and corrosion resistance, and besides, the fact that the film layers of the traditional titanium nitride and titanium carbide composite coatings are easy to peel off from the titanium alloy is avoided, and the surface of the titanium alloy is not needed to be subjected to coating and anticorrosive treatment additionally, so that the cost is saved, and no other additional processing procedures are required.
Owner:南京博乔机械有限公司

Method for preparing medical porous NiTi shape memory alloy by microwave sintering

The invention relates to a method for preparing a medical porous NiTi shape memory alloy by microwave sintering. The method comprises the following steps of: (1) compounding powder: compounding titanium powder, nickel powder and pore-forming agent powder according to certain mass percentage; (2) performing ball milling: putting the compounded powder body into a stainless steel ball milling pot for ball milling; (3) pressing billets: performing mold pressing on the powder materials after the ball milling at the pressure of between 50 and 500 MPa into pressed billets; (4) charging in a furnace:putting the obtained pressed billets and a microwave auxiliary heating material into a polycrystalline mullite fiber heat insulation barrel, and putting the heat insulation barrel into a microwave sintering furnace; and (5) performing microwave sintering. The method has the advantages that: the preparation method is simple and convenient, the sintering cycle is short, the energy consumption is low, the method is suitable for industrialized production, the porous NiTi shape memory alloy obtained by sintering has good mechanical properties, a pore structure is in three-dimensional communication, the pore ratio is controllable between 20 and 80 percent, the pore sizes are uniform and are controllable between 30 and 600 mu m, and the medical porous NiTi shape memory alloy can be used as materials for repairing and replacing hard tissues such as bones, joints, artificial tooth roots and the like.
Owner:NANCHANG HANGKONG UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products