Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1538 results about "Sphericity" patented technology

Sphericity is a measure of how closely the shape of an object resembles that of a perfect sphere. For example, the sphericity of the balls inside a ball bearing determines the quality of the bearing, such as the load it can bear or the speed at which it can turn without failing. Sphericity is a specific example of a compactness measure of a shape. Defined by Wadell in 1935, the sphericity, Ψ, of a particle is the ratio of the surface area of a sphere with the same volume as the given particle to the surface area of the particle: Ψ=π¹/³(6Vₚ)²/³/Aₚ where Vₚ is volume of the particle and Aₚ is the surface area of the particle.

Metal or ceramic consumable item for FDM 3D printing, preparation method for metal or ceramic consumable item and finished product printing method

The invention discloses a metal or ceramic consumable item for FDM 3D printing, a preparation method for the metal or ceramic consumable item and a finished product printing method. The metal or ceramic consumable item comprises, by weight, 15-50 parts of a high polymer material, 0-2 parts of a compatilizer, 50-80 parts of metal powder or ceramic powder, 0.1-1 part of an antioxygen and 0.1-2 parts of a lubricating agent. The cost for equipment, the materials and machining is low; a printing structure is free of limitation, collapsing conditions do not exist in the printing process, supports can be removed before fusion sintering of the product, and treatment is easier compared with a manner that the supports are removed after SLS or EBAM fusion sintering; the requirements for the sphericity degree, the size distribution, the mobility and the like are relatively low; the types of metal and ceramic capable of being printed are wider; and the density of the finished products is higher, the strength is high, the degree of finish is higher, the miniaturization capacity is high, the thin-wall capacity is high, the complexity is high, the design tolerance level is high, and the material adaption scope is wide.
Owner:HUIZHOU RES INST OF SUN YAT SEN UNIV

Manufacturing method of micro spherical titanium and titanium alloy powder

ActiveCN104475743AFast purification smeltingControlled purification smeltingSpherical shapedTitanium alloy
The invention relates to a manufacturing method of micro spherical titanium and titanium alloy powder, and belongs to the technical field of metal and alloy powder manufacturing. The manufacturing method comprises the steps that a titanium and titanium alloy wire or bar is manufactured by using sponge titanium in the national standard TA1 grade as a raw material; forvacuum treatment is conducted on a powder manufacturing device, and then the powder manufacturing device is filled with inert protective gas; the raw material wire or bar is fed into a smelting chamber through a continuous feeding mechanism and a straightener, the raw material is heated and smelted through a high-frequency induction coil, and the alloy raw material is molten to form stable liquid flow or drip flow; supersonic atomizing nozzles in atomizers are opened, and breakage, dispersion and forced cooling powder manufacturing are conducted on the molten liquid flow or the drip flow; powder is obtained through a powder collector, and is screened through an ultrasonic vibrating screen to obtain the micro spherical titanium and titanium alloy powder. The micro spherical titanium and titanium alloy powder manufactured through the manufacturing method is small in particle size, high in degree of sphericity, good in liquidity and low in impurity content, and has smooth surfaces.
Owner:有研增材技术有限公司

High-density small-particle-size nickel-cobalt-manganese hydroxide and preparing method thereof

The invention relates to a high-density small-particle-size nickel-cobalt-manganese hydroxide and a preparing method thereof. The nickel-cobalt-manganese hydroxide and the preparing method thereof are characterized in that: the general chemical formula of the nickel-cobalt-manganese hydroxide is NixCoyMnz(OH)2, wherein the sum of the x, the y and the z is 1, the x is not more than 0.8 and not less than 0.3, the y is not more than 0.4 and not less than 0.1, and the z is not more than 0.4 and not less than 0.1. The nickel-cobalt-manganese hydroxide is provided, so that problems of small-particle-size nickel-cobalt-manganese hydroxides prepared by methods at present, namely nonuniform element distribution, poor particle appearance, loose surfaces, difficult particle size control, nonuniformity, low tap density, and the like are overcome. A complexing control crystallization coprecipitation method is adopted. By a special technical process of producing nucleuses, growing, and subjecting particles to continuous frictional collision under a continuously increased solid liquid ratio, an aqueous solution of a nickel-cobalt-manganese soluble salt and an aqueous sodium hydroxide solution are subjected to coprecipitation under complexing of ammonia to obtain the small-particle-size nickel-cobalt-manganese hydroxide having characteristics of uniform element distribution, good degree of sphericity, uniform particle size distribution and high tap density.
Owner:宁夏中色金辉新能源有限公司

Short-flow preparation method of micro-sized spherical titanium powder

The invention provides a short-flow preparation method of micro-sized spherical titanium powder, which belongs to the technical field of powder preparation. The hydrogenation-dehydrogenation technique and the radio frequency plasma body fusion spheroidization technique are integrated, and the titanium hydride powder is selected as raw material; the titanium hydride powder absorbs heat in the high-temperature plasma and quickly decomposes and dehydrogenates, and the titanium hydride power is cracked and crushed in the process of dehydrogenation to produce the micro-sized titanium powder. By using the method, the processes of the dehydrogenation and the spheroidization of the generated titanium powder are finished in one step directly through the plasma processing, and the short-flow preparation of the micro-sized spherical titanium powder is realized. The invention has the advantages that the hydrogenation-dehydrogenation technique and the radio frequency plasma fusion spheroidization technique are combined, so as to shorten the production flow, enhance the production efficiency and reduce the production cost. Simultaneously, the prepared spherical titanium power has fine and even particles, good liquidity, high sphericity and low oxygen content, thereby the requirements of technical industrial production such as the injection figuration, the gel die casting figuration, and the like are satisfied.
Owner:江苏金物新材料有限公司

Gas atomization preparing method for micro spherical metal powder and equipment thereof

ActiveCN107262730AIncrease characteristic surface energyHigh yield of fine powderTransportation and packagingMetal-working apparatusPositive pressureProduct gas
The invention belongs to the technical field of preparing a metal powder material and provides a gas atomization preparing method for micro spherical metal powder and equipment thereof. The preparing method comprises the technological process of smelting a material, driving molten metal jet flow through positive pressure, atomizing gas, carrying out cooling, collecting powder, detecting performance, and carrying out screening, packaging and the like, by reducing the outlet hole diameter of a flow guide nozzle, inert gas is reversely filled into a smelting chamber to certain positive pressure, the smelting chamber in the gas atomizing equipment is designed into a pressure container, a locking sealing device is adopted in the connecting portion of a furnace cover and a furnace body, the smelting chamber and an atomizing tank are designed into cavities which are isolated mutually and communicate only through the flow guide nozzle, and the fine powder yield of the metal powder is effectively increased. Compared with the existing gas atomizing metal powder preparing technology, the fine powder yield of the metal powder prepared by the utilization of the method is high, size distribution is narrow, the sphericity degree is good, the oxygen content is small, atomized gas consumption is low, and the technology equipment is simple, high in continuity and suitable for industrialized production and can be widely applied.
Owner:有研金属复材技术有限公司

Urea-formaldehyde resin coated epoxy acrylic resin microcapsule for resin-base self-repair coating and preparation method thereof

The invention relates to a urea-formaldehyde resin coated epoxy acrylic resin microcapsule for a resin-base self-repair coating and a preparation method thereof. The preparation method is characterized by comprising the following steps: adding capsule core raw materials epoxy acrylic resin and acrylate reactive diluent into a water solution containing an emulsifier and a defoaming agent, dispersing the capsule core with a homogenizer or emulsifying machine to form a stable emulsion; regulating the pH value of the stable emulsion system to 2-3, adding capsule wall raw materials urea, formaldehyde and crosslinking agent, stirring until the capsule is formed, and after the reaction finishes, regulating the pH value of the system to neutral; and repeatedly washing with hot water and acetone, centrifuging, and carrying out vacuum drying to obtain the epoxy acrylic resin microcapsule. The capsule provided by the invention has the advantages of favorable sealability, regular sphericity, controllable grain size and controllable capsule wall thickness, and can be widely used for self-repair of a UV-cured acrylic resin coating or epoxy resin coating at low temperature and room temperature, thereby prolonging the service life of the coating material and widening the application range of the resin-base coating.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Three-freedom Halback array permanent magnetism sphericity synchronous motor

The invention relates to a three-freedom degree Halbach array permanent magnetism spherical synchronous motor, belonging to spherical electric machine manufacturing technical field, which comprises a base, a support bearing positioned on the base, a spherical rotor body, an outside stator, an output shaft, the spherical rotor body comprises a hollow spherical rotor yoke made by non-guide magnetism materials and a Halbach array permanent magnetism body, the output shaft is through the upper of the hollow spherical rotor yoke and is fixingly connected with the hollow spherical rotor yoke, column-shaped slots are provided around a cycle of the hollow spherical rotor yoke equator, the Halbach array permanent magnetism body are fixed evenly on one cycle of the rotor yoke equator along the column-shaped slots, the contact surface of the rotor yoke lower and the support bearing is ring-shaped arc surface; the outer stator comprises a stator casing and multi-row coils, an adjustable fixing bearing is provided on the lower side of the stator casing cover. The spherical synchronous motor of the invention can realize three-freedom degree movement, has simple mechanical structure and improved dynamic and static performance of the drive system.
Owner:TIANJIN UNIV

Preparation method of IN718 alloy spherical powder

The invention discloses a preparation method of IN718 alloy spherical powder. The method comprises the following steps of step 1, smelting an IN718 alloy master ingot; step 2, processing the IN718 alloy master ingot into an IN718 alloy electrode bar with the diameter of 50 to 90mm and the length of 600 to 800mm, wherein the straightness of the electrode bar is controlled to be smaller than or equal to 0.1mm / m; step 3, placing the IN718 alloy electrode bar in a sealed furnace chamber protected by inert gas, rotating the IN718 alloy electrode bar at high speed, and heating the end part of the electrode bar by using a plasma gun to melt the electrode bar; step 4, atomizing the melted metal under the action of centrifugal force to enable melted metal to fly to form fine liquid droplets, wherein the liquid droplets are quickly cooled in inert gas to form spherical particles, and the spherical particles fall into a collector at the bottom of the furnace chamber to form the IN718 alloy spherical powder; step 5, under the protection of the inert gas, performing electrostatic separation processing on the prepared IN718 alloy spherical powder to remove non-metal impurities from the powder to obtain the pure IN718 alloy spherical powder. The method has the characteristics of good sphericity degree, fine particle size, low oxygen content and few impurities.
Owner:SINO EURO MATERIALS TECH OF XIAN CO LTD

Melting process for producing synthetic cast iron by utilizing SiC carburizing siliconizing

The invention discloses a melting process for producing synthetic cast iron by utilizing SiC carburizing siliconizing, which produces the synthetic cast iron by taking scrap steel, pig iron and cast iron returns or scrap steel and cast iron returns as the main raw materials in an induction furnace by utilizing SiC as an carburizing siliconizing agent, wherein the addition of SiC is 0.5-3%, and thegranularity is 6-20mm; SiC is added to a hearth before melting or is added during the melting process, or the two modes cooperate to be used. The invention utilizes SiC to replace the pig iron and silicon iron carburizing siliconizing to reduce the pig iron and silicon iron so as to reduce the cost, and meanwhile, the tendency of the molten iron chill and the reverse chill of the produced synthetic cast iron is small; the dimensions of graphite pebbles in produced nodular cast iron are small, the sphericity or roundness is high, the content of ferrite is high, and the roughness of the nodularcast iron is improved; the organization of produced grey cast iron is refined, and the mechanical property and the abrasion resistance are obviously improved. The invention can be used for producingvarious trademarks of grey cast iron, nodular cast iron and alloy cast iron.
Owner:河南省金太阳精密铸业股份有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products