Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

10825results about "Magnetic circuit rotating parts" patented technology

Light weight rotor and stator with multiple coil windings in thermal contact

A lightweight engine-driven generator set including a stator having at least first and second windings (preferably three-phase) and a rotor having a soft magnetic core and a plurality of high energy product permanent magnets, separated by consequence poles, disposed proximate the stator such that relative motion of the rotor and stator causes magnetic flux from the rotor to interact with and induce current in the stator windings. The first winding includes a predetermined number of turns corresponding to a first predetermined voltage output; and the second winding includes a predetermined number of turns corresponding to a second predetermined voltage output, the respective windings being grouped together as a unit and wound about the core such that the respective winding coils are wound in continuous close thermal contact with each other. The first winding generates a relatively high voltage, low amperage signal, and the second winding generates a relatively low voltage, high amperage signal; and a switch provides for selection of the desired output. Preferably the rotor is a hollow cylinder mounted on the engine shaft for rotation about the stator and such that the proper gap distance between rotor and stator is maintained during rotation of the rotor without bearings external to the engine. The low voltage, high amperage winding (or winding group) may be tapped to provide a selectable voltage output. Suitable rectifiers and inverters may be provided to effect selective DC and AC output signals.

Motor generator including interconnected stators and stator laminations

An axial field motor/generator having a rotor that includes at least three annular discs magnetized to provide multiple sector-shaped poles. Each sector has a polarity opposite that of an adjacent sector, and each sector is polarized through the thickness of the disc. The poles of each magnet are aligned with opposite poles of each adjacent magnet. Metal members adjacent the outermost two magnets contain the flux. The motor/generator also has a stator that includes a stator assembly between each two adjacent magnets. Each stator assembly includes one or more conductors or windings. Although the conductors may be formed of wire having a round, uniform cross-section, they may alternatively be formed of conductors having a tapered cross-section that corresponds to the taper of the sectors in order to maximize the density of the conductor in the gap between axially adjacent poles. The conductors may also alternatively be formed of traces in a printed circuit, which may have one or more layers. Each stator assembly may be removably connectable to another stator assembly to provide modularity in manufacturing and to facilitate selection of the voltage at which the motor/generator is to operate. Electrical contacts, such as pins extending from the casing, may removably connect the conductors of adjacent stator assemblies. A magnet may be dynamically balanced on the shaft by hardening a thin ring of cross-linked resin between the magnet and the shaft while the shaft is spun, using ultraviolet light to polymerize the resin.

Ultrathin high-power direct current magnetoelectric motor

The invention discloses an ultrathin high-power direct current magnetoelectric motor, comprising a transmission shaft, a discal stator component sleeved at the middle section of the transmission shaft, discal rotor components which are respectively arranged at the two sides of the stator component and rotate with the transmission shaft, and an upper end cap and a lower end cap which are respectively arranged at the two sides of the rotor components. The stator component comprises a discal stator frame, a plurality of fan-shaped grooves which are arranged on the stator frame in a ring form, fan-shaped windings arranged in the fan-shaped grooves, and inner clamping rings and outer clamping ring for fixing the fan-shaped windings. The rotor component comprises a rotor plate fixedly connectedwith the transmission shaft, fan-shaped grooves which are arranged on the rotor plate in a ring form, and permanent magnets fixed in the grooves. The surface of the rotor plate, which provided with the permanent magnets, faces the fan-shaped windings. The motor of the invention has the advantages of higher efficiency and energy saving, and the manufacturing, the assembling and the maintenance of the stator winding are more simple, convenient and reliable.

Brushless motor

A brushless motor comprising a housing; a drive shaft rotatably held by the housing; a stator disposed on said housing and having a plurality of coils which are arranged to surround the drive shaft; a yoke secured to the drive shaft to rotate therewith; a plurality of magnets that are held by the yoke in a manner to surround the stator keeping a given space therebetween; an electric parts protecting case on which the housing is mounted; a drive circuit installed in the case for energizing the coils of the stator, the drive circuit including a plurality of switching elements each changing the direction of electric current flowing in the corresponding coil of the stator; a control circuit installed in the case for controlling operation of the switching elements to adjust a rotation speed of the drive shaft; electric connectors for connecting the drive and control circuits; and a heat sink held by the case, the heat sink including a hidden portion exposed to an interior of the case and a plurality of heat radiation fins exposed to the outside of the case, the hidden portion having the switching elements attached thereto. The drive circuit and control circuit are arranged on respective substitutes which are arranged at different positions in the electric parts protecting case. The drive and control circuits are connected through electric connectors.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products