Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

505 results about "Titanium boride" patented technology

Titanium diboride (TiB2) is an extremely hard ceramic which has excellent heat conductivity, oxidation stability and resistance to mechanical erosion. TiB2 is also a reasonable electrical conductor, so it can be used as a cathode material in aluminium smelting and can be shaped by electrical discharge machining.

Short fiber-particle synergetically-reinforced copper-based composite material and preparation method thereof

The invention relates to a copper-based composite material, and particularly relates to a short fiber-particle synergetically-reinforced copper-based composite material which is prepared through powder metallurgy. Short fibers and particles are used as reinforced phases, the content of the short fiber is 0.1-0.1 wt%, and the content of reinforcement particles is 0.1-10 wt%. The short fibers can be carbon nanotubes, carbon nanofibers, ceramic short fibers, and the like, and the particles used as reinforced phases can be aluminum oxide, zirconium oxide, magnesium oxide, titanium dioxide, silicon carbide, titanium carbide, tungsten carbide, silicon nitride, aluminum nitride, titanium nitride, titanium diboride, Ti3SiC2, and the like. The composite material is prepared through the steps of mixing, forming, sintering and processing, and the room temperature and the high temperature strength of the composite material can be increased by more than 3 times in comparison with those of pure copper; the electrical conductivity of the composite material can reach more than 80% of that of pure copper; the thermal conductivity of the composite material can reach more than 70% of that of pure copper; the coefficient of friction of the composite material can be reduced to be below 70% of that of pure copper; and the wear rate of the composite material can be reduced to be below 50% of that of pure copper.
Owner:UNIV OF SCI & TECH BEIJING

Lightweight dry refractory

InactiveCN1370136AClaywaresSlagCordierite
The present invention relates to dry refractory compositions having excellent thermal insulation values. The dry refractory composition also has excellent resistance to molten metal and slag. The composition comprises a lightweight filler material selected from the group consisting of perlite, vermiculite, expanded shale, expanded fire clay, expanded silica-alumina hollow spheres, vesicular alumina, sintered porous alumina, alumina spinel Stone insulating aggregate, ettringite insulating aggregate, expanded mullite, cordierite and anorthite, and a matrix material selected from the group consisting of calcined alumina, fused alumina, sintered magnesia, fused magnesia, Silicon fume, fused silica, corundum, boron carbide, titanium diboride, zirconium boride, boron nitride, aluminum nitride, silicon nitride, sialonite, titanium dioxide, barium sulfate, zircon, sillimanite Group of minerals, pyrophyllite, fire clay, carbon and calcium fluoride. The composition may also contain dense refractory aggregates selected from the group consisting of calcined clay, calcined clinker, minerals of the sillimanite group, calcined bauxite, pyrophyllite, silica, zircon, baddeleyite, cordierite , corundum, sintered alumina, fused alumina, fused quartz, sintered mullite, fused mullite, fused zirconia, sintered zirconia mullite, fused zirconia mullite, sintered magnesia, Fused magnesia, sintered spinel and fused spinel refractory clinker. The composition also contains a heat activated binder and a dust suppressant.
Owner:ALLIED MINERAL PROD

Multiple dispersion strengthening copper-base composite material prepared in situ and preparation method thereof

The invention discloses a multiple dispersion strengthening copper-base composite material produced in situ and a preparation method thereof; the reinforced phase comprises at least three of the following substances: titanium carbide, zirconium carbide, alumina, titanium boride, aluminum carbide, chromium oxide, zirconia, graphite and copper; wherein, the contents of titanium carbide, zirconium carbide, alumina, titanium boride, chromium oxide and zirconia are not less than 0.3% and not more than 5%, the content of aluminum carbide is not less than 0.1% and not more than 5%, the content of graphite is not less than 0.1% and not more than 1% and the balance is copper. The particle size of the reinforced phase is between 10nm to 10mu m. The preparation method adopts ball milling; pressing, sintering and squeezing processes and the technological parameters are optimized and controlled properly to obtain the multiple dispersion strengthening copper-base composite material. Because the in situ self-generation technology is adopted and various reinforced phase methods are combined, the material of the invention has higher high-temperature strength and better electroconductibility and anti-creep property compared with the traditional ceramic particle strengthening copper-base composite material.
Owner:WENZHOU HONGFENG ELECTRICAL ALLOY

Powder metallurgy titanium alloy and preparation method thereof

The invention provides powder metallurgy titanium alloy and a preparation method thereof. The powder metallurgy titanium alloy comprises the following components in percentage by mass: 2 to 7 percent of Al, 2 to 8 percent of Mo, 2 to 6 percent of V, 2 to 10 percent of Ag, 0.1 to 3.0 percent of LaB6 and the balance of titanium and inevitable impurities. The method comprises the following steps of: weighing titanium powder, aluminum powder, molybdenum powder, aluminum-vanadium intermediate alloy powder, silver powder and lanthanum hexaboride powder with certain particle size according to the mass percentage of the components; uniformly mixing the powder by a mixing method; preparing a green compact with a certain shape by a compression molding process; placing the green compact in a vacuum hot pressing sintering furnace to sinter; and cooling the green compact along with the furnace to obtain silver and titanium boride particle-containing powder metallurgy titanium alloy. The technological process is simple; the silver powder is added during the mixing of the materials to improve the molding property of the green compact; the lanthanum hexaboride powder is added to perform reaction in situ so as to generate titanium boride dispersion enhanced matrix alloy; the compactness of the sinter compact is further improved by hot pressing sintering; and thus the novel powder metallurgy titanium alloy with high compactness and high strength is obtained.
Owner:CENT SOUTH UNIV

Ceramic armor and method of making by encapsulation including use of a stiffening plate

A ceramic armor is disclosed in several embodiments. In a first embodiment, a metal base plate has a metal frame assembled on it having a central opening into which the ceramic material and stiffening plate are placed. A cover plate is placed over the frame to enclose the ceramic material on all sides. In a second embodiment, the frame has an open central area that has two crossing walls that define four sub-chambers. Four sets of ceramic material and stiffening plate are placed in the respective sub-chambers and a covering plate is placed over them. In a further embodiment, the frame has a plurality of cavities mechanically formed in it. A stiffening plate and a ceramic tile or plate are placed in each cavity and a cover plate is placed over the frame. The metal used to encapsulate the ceramic material may, if desired, comprise a Titanium alloy such as Ti-6Al-4V, and the ceramic material may comprise Silicon Carbide, Boron Carbide, Tungsten Carbide, Titanium Diboride, Aluminum Oxide or Aluminum Nitride. The stiffening plate is preferably made of a Ti—TiB cermet composite but may also be comprised of an armor ceramic such as WC, TiB2, Al2O3 or B4C. A hot pressing procedure is carried out on the armor to cause the metal to plastically deform about the encapsulated ceramic material.
Owner:BAE SYST ADVANCED CERAMICS

Titanium boride coatings on titanium surfaces and associated methods

InactiveUS20050208213A1High wear and corrosion and oxidation resistanceResistance to galling and seizureLiquid surface applicatorsSolid state diffusion coatingParticulatesSolid particle
A borided titanium article can include a titanium mass having titanium monoboride whiskers infiltrating inward from a surface of the titanium mass to form an integral surface hardened region. The titanium mass can be almost any titanium based metal or alloy such as high purity titanium, commercial grade titanium, α-titanium alloy, α+β titanium alloy, β-titanium alloy, titanium composite, and combinations thereof. Borided titanium articles can be formed by methods which include providing a titanium mass, contacting a surface of the titanium mass with a boron source medium, and heating the titanium mass and boron source medium to a temperature from about 700° C. to about 1600° C. The boron source medium can include a boron source and an activator selected to provide growth of titanium monoboride whiskers. The boron source medium can be provided as a solid particulate mixture, liquid mixture, or as a gaseous mixture. During heating, boron from the boron source infiltrates into the titanium mass and forms titanium monoboride whiskers which improve the surface hardness, wear resistance, oxidation resistance, and corrosion resistance of the treated surface. The titanium monoboride whiskers can be controlled to have the desired dimensions, depending on the application requirements. Boriding titanium surfaces using these methods, provides a relatively inexpensive and effective process for improving the surface properties of titanium which are then useful in a wide variety of applications.
Owner:UNIV OF UTAH RES FOUND

Hexagonal boron nitride two-dimensional ultrathin nanometer sheet as well as preparation method and application thereof

The invention discloses a hexagonal boron nitride two-dimensional ultrathin nanometer sheet as well as a preparation method and application thereof and belongs to the technical field of nanometer materials. According to the invention, metal boride (such as calcium boride, lanthanum boride, magnesium boride, titanium boride and the like) is adopted as a boron resource; ammonium salt (such as ammonium chloride, ammonium bromide, ammonium nitrate and the like) is adopted as a nitrogen source; and the hexagonal boron nitride two-dimensional ultrathin nanometer sheet with the thickness of 0.5-4.0nm is obtained through the reaction under a mild condition (at the temperature of 500-600 DEG C). The invention aims to realize the macro-quantity preparation of the hexagonal boron nitride two-dimensional ultrathin nanometer sheet at the mild temperature by adopting cheaper raw materials; the preparation method has the advantages of saving the energy, simplifying the experimental step and greatly reducing the product cost; and due to the high heat conductivity, heat stability and chemical stability, the hexagonal boron nitride two-dimensional ultrathin nanometer sheet can be applied to the fields of heat dissipation materials, polymer filling materials, catalyst carriers and the like.
Owner:SOUTH CHINA AGRI UNIV

High purity zirconium boride / hafnium boride and preparation of superhigh temperature ceramic target material

ActiveCN101468918AAvoid the disadvantages of poor dry mixingEnsure safetyBorideHafnium
The invention discloses a method for preparing a high-purity ultrahigh-temperature ceramic target material which belongs to the technical field of ceramic target materials, and in particular provides a method for preparing high-purity zirconium / hafnium boride powder and a ceramic target material thereof. The method comprises the steps of taking high-purity Zr powder, Hf powder and high-purity B powder as raw materials, adopting a self-propagating method to prepare high-purity ZrB2 and HfB2 powder respectively and then adopting a high-temperature high-pressure hot-pressing molding process to prepare a high-purity dense zirconium / hafnium boride ultrahigh-temperature ceramic target material, wherein the relative density of the target material reaches 95 to 99 percent. Relative to the prior art, metal powder in the method is slightly excessive when the materials are mixed, so as to make up for the metal loss during self-propagating reaction and further guarantee the component unicity of products. Relative to pressureless sintering, the sintering temperature needed in the method is greatly lowered; in addition, as the hot-pressing process adopts two-stage temperature, blank is uniform in temperature field, so as to ensure that the target material with uniform density can be obtained in the late hot-pressing process.
Owner:有研资源环境技术研究院(北京)有限公司

Method for preparing boron-doped titanium dioxide crystal containing specific crystal plane

The invention relates to the field of photocatalysis materials, in particular to a method for preparing a boron-doped titanium dioxide crystal containing a specific crystal plane. The method comprises the following steps of: loading titanium boride serving as a precursor into a reaction kettle of an acid solution containing different anions; sealing the reaction kettle; putting the reaction kettle into a baking oven for heating; taking a reaction sample out; washing with deionized water and drying to obtain a boron-doped titanium dioxide crystal containing a specific crystal plane in an acid system containing anions; and further thermally treating the boron-doped titanium dioxide crystal under different atmospheres, adjusting the distribution of boron in the crystal, and introducing a newheteroatom. In the invention, the boron-doped titanium dioxide crystal can be directly prepared by taking the titanium boride as the precursor and taking the anions as a morphology control agent, andthe surface of the boron-doped titanium dioxide crystal consists of an identifiable crystal plane, so that effective adjustment and control of the electronic structure of the photocatalysis material are effectively realized, and the defects of poor reaction selectivity and unavailable invisible light activity of the photocatalysis material are overcome.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Preparation method of titanium boride compounded titanium carbide-based metal ceramic cutter material

The invention relates to a novel material and particularly relates to a preparation method of a titanium boride compounded titanium carbide-based metal ceramic cutter material. The titanium boride compounded titanium carbide-based metal ceramic cutter material comprises the following primary powder in percentage by mass: 58.22wt%-60.11wt% of TiC, 33.78wt%-34.89wt% of TiB2, 0-3.55wt% of Mo and 4.45wt%-8wt% of Ni. A preparation process comprises the following steps: respectively filling a ball milling cylinder with TiC and TiB2 in a formula, and carrying out wet milling for 48 hours in alcohol by virtue of a tungsten carbide ball; carrying out vacuum drying at 100-120 DEG C, filtering by virtue of a 100-mesh sieve, and packaging for later use; weighing primary powder Ni and Mo and ball-milled TiC and TiB2 by mass, and mixing, carrying out wet milling for 48 hours, carrying out vacuum drying, and packaging for later use; weighing mixed powder by weight in a cutter preparation process, adding the mixed powder into a graphite mold, and carrying out vacuum sintering; heating from the room temperature to 700 DEG C at a heating rate of 50DEG C/min, and maintaining the temperature for 2min; and heating from 1450 DEG C to 1650 DEG C at the heating rate of 50DEG C/min, and carrying out thermal pressure sintering forming when a pressure of 32MPa is applied and the temperature is maintained for 30min. The preparation process is simple, stable, low in cost and high in efficiency; when the high hardness of the prepared cutter material is preserved, the bending strength and the fracture toughness are improved; and the prepared cutter material can be applied to other high-temperature wear-proof structural components.
Owner:SHANDONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products