Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

635 results about "High fracture" patented technology

Optimum design method for staged fracturing perforation cluster parameters of horizontal well of shale reservoir

The invention relates to an optimum design method for staged fracturing perforation cluster parameters of a horizontal well of a shale reservoir. The optimum design method includes the following steps of S1, selecting high-fracture-performance fracturing well sections; S2, building a mathematical model for hydrofracture fracture progressing, analyzing an induction stress field model for fracture extension, and analyzing a fracture diverting mechanism; S3, analyzing extending conditions of main fractures, and selecting cluster distances capable of allowing the main fractures to evenly extend forwards; S4, analyzing change conditions of stress fields around the main fractures, selecting the perforation cluster distances with the horizontal principal stress ratios smaller than 1.3, and determining the optimal perforation cluster distances in cooperation with the step S3; S5, further improving the complexity of the fractures through an alternate fracturing principle, and setting the perforation density of perforation clusters in the middle to range from 10 to 16 per m and the perforation density of perforation clusters in the two sides to be larger than 16 per m. By means of the optimum design method, the perforation cluster distances can be optimized, largest fracture transforming sizes can be obtained, the practical effect of reservoir transforming can be improved, and high construction cost and the poor fracturing effect which are caused by aimlessly setting the perforation cluster distances can be avoided.
Owner:SOUTHWEST PETROLEUM UNIV

Multilayer printed wiring board having filled-via structure

The present invention provides a multilayer printed wiring board having a filled viahole structure advantageously usable for forming a fine circuit pattern thereon, and having an excellent resistance against cracking under a thermal shock or due to heat cycle. The multilayer printed wiring board is comprised of conductor circuitry layers and interlaminar insulative resin layers deposited alternately one on another, the interlaminar insulative resin layers each having formed through them holes each filled with a plating layer to form a viahole. The surface of the plating layer exposed out of the hole for the viahole is formed substantially flat and lies at a substantially same level as the surface of the conductor circuit disposed in the interlaminar insulative resin layer. The thickness of the conductor circuitry layer is less than a half of the viahole diameter and less than 25 μm. The inner wall of the hole formed in the interlaminar insulative resin layer is roughened and an electroless plating layer is deposited on the roughened surface. An electroplating layer is filled in the hole including the electroless plating layer to form the viahole. The interlaminar insulative resin layer is formed from a composite of a fluororesin showing a high fracture toughness and a heat-resistant thermoplastic resin, a composite of fluororesin and thermosetting resin or a composite of thermosetting and thermoplastic resins.
Owner:IBIDEN CO LTD

Thermal barrier coatings with high fracture toughness underlayer for improved impact resistance

A reduced thermal conductivity thermal barrier coating having improved impact resistance for an underlying substrate of articles that operate at, or are exposed to, high temperatures. This coating comprises an inner high fracture toughness layer nearest to the underlying substrate and having a thickness up to about 5 mils (127 microns) sufficient to impart impact resistance to the thermal barrier coating, and comprises a zirconia-containing ceramic composition having a c/a ratio of the zirconia lattice in the range of from about 1.011 to about 1.016 and stabilized in the tetragonal phase by a stabilizing amount of a stabilizing metal oxide selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india, lanthana, gadolinia, neodymia, samaria, dysprosia, erbia, ytterbia, europia, praseodymia, and mixtures thereof. The thermal barrier coating further includes an outer thermal insulating layer adjacent to and overlaying the inner layer and comprising a ceramic thermal barrier coating material. The thermal barrier can be used to provide a thermally protected article having a substrate (e.g., metal substrate) and optionally a bond coat layer adjacent to and overlaying the substrate. The thermal barrier coating can be prepared by forming the inner high fracture toughness layer, followed by forming on the inner layer the outer thermal insulating layer.
Owner:GENERAL ELECTRIC CO

Multilayer printed wiring board with filled viahole structure

The present invention provides a multilayer printed wiring board having a filled viahole structure advantageously usable for forming a fine circuit pattern thereon, and having an excellent resistance against cracking under a thermal shock or due to heat cycle. The multilayer printed wiring board is comprised of conductor circuitry layers and interlaminar insulative resin layers deposited alternately one on another, the interlaminar insulative resin layers each having formed through them holes each filled with a plating layer to form a viahole. The surface of the plating layer exposed out of the hole for the viahole is formed substantially flat and lies at a substantially same level as the surface of the conductor circuit disposed in the interlaminar insulative resin layer. The thickness of the conductor circuitry layer is less than a half of the viahole diameter and less than 25 μm. The inner wall of the hole formed in the interlaminar insulative resin layer is roughened and an electroless plating layer is deposited on the roughened surface. An electroplating layer is filled in the hole including the electroless plating layer to form the viahole. The interlaminar insulative resin layer is formed from a composite of a fluororesin showing a high fracture toughness and a heat-resistant thermoplastic resin, a composite of fluororesin and thermosetting resin or a composite of thermosetting and thermoplastic resins.
Owner:IBIDEN CO LTD

Method for manufacturing prestressed concrete tubular pile

The invention relates to a method for manufacturing a prestressed concrete tubular pile, which belongs to the technical field of building engineering materials. The method comprises the following steps of: weighing silicate cement, composite superfine powder, sand, broken stone, water and composite water reducing agent in a ratio, pouring the weighed sand into a stirrer, adding the weighed silicate cement and the weighed composite superfine powder into the stirrer in turn, stirring the mixture, then adding the weighed water into the stirrer, stirring the mixture to form cement mortar, adding the weighed composite water reducing agent into the stirrer, and finally adding the weighed broken stone into the stirrer to obtain concrete; pouring the concrete into a tubular pile die, tensing steel bars to obtain a pre-stressing force, and centrifugally shaping the concrete to obtain the prestressed concrete tubular pile; and finally curing the prestressed concrete tubular pile by steam. The manufacturing method only needs low-temperature and normal-pressure steam curing, and has the advantages of simple production equipment, convenient process control, safe production and operation, saving of production land, reduction of product cost, improvement of production efficiency, reduction of environmental pollution, high compression-resistant push, good impact toughness, high fracture toughness and good durability.
Owner:深圳市同成新材料科技有限公司

Rare earth-mixing high strength lithium bisilicate sitall material and preparation method thereof

The invention relates to a rare earth-mixing high strength lithium bisilicate sitall material and a preparation method thereof. Parent glass of the invention includes the following components according to molar percentage: 61.2 to 66.0 percent of SiO2, 0 to 2.5 percent of B2O3, 0 to 1.6 percent of Al2O3, 1.0 to 3.7 percent of P2O5, 0 to 2.3 percent of ZrO2, 1.0 to 1.8 percent of K2O, 24.2 to 31.8 percent of Li2O, 0 to 2.0 percent of MgO, 0 to 2.0 percent of CaO, and 0.5 to 4.2 percent of La2O3+Y2O3. A corresponding raw material prepared from the oxidates is processed by the steps of ball milling, 80 mesh sieve sieving and uniform mixing to obtain a batch; the batch is led into a copple to be melted after the temperature from 1480 to 1520 DEG C is maintained for 2 to 3 hours, and the melted batch is cast into a stainless steel mould to be molded and then is annealed at 500 DEG C for 0.5 hour; and the step of coring is carried out in a resistance furnace at the temperature from 500 to 550 DEG C for 1 hour, and the step of crystallization is carried out at the temperature from 600 to 850 DEG C for 2 hours. The crystallization degree of the sitall is as high as 60 to 70 percent, the flexural strength is 100 MPa or more higher than the sitall to which the rare earth oxides are not added, the highest flexural strength reaches 334 MPa, the maximum elastic modulus reaches 143 GPa, and the highest fracture toughness reaches 3.34 MPa-m. The sitall of the invention has favorable stability, and the heat treatment temperature is lower and is easy to control.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products