Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

145 results about "Ti 6al 4v" patented technology

Ti-6Al-4V (UNS designation R56400 ), also sometimes called TC4, is an alpha-beta titanium alloy with a high strength-to-weight ratio and excellent corrosion resistance. It is one of the most commonly used titanium alloys and is applied in a wide range of applications where low density and excellent corrosion resistance are necessary...

Forging machining method of large-sized bar materials of TC4 (Ti-6Al-4V) titanium alloy

The invention relates to bar material forging machining method of titanium alloy, particularly to a forging machining method of large-sized bar materials of TC4 (Ti-6Al-4V) titanium alloy. The forging machining method is characterized by comprising the following steps of step 1, performing cogging forging, step 2, performing intermediate forging above a phase transformation point, step 3, performing intermediate forging below the phase transformation point, step 4 and step 5, performing finished product forging and obtaining the phi 200 to 300 mm and 2000 to 3000 mm length of large-sized bar materials of the TC4 titanium alloy finally. Compared with the prior art, a large-sized ingot casting and a large-tonnage forging device are not required and the industrialized production can be achieved through an ordinary industrial 3 ton ingot and a small-tonnage forging press and the equipment investment is small, only a 3 tons of electric arc furnace and a 3000 tons of forming oil press which is matched with the electric arc furnace need to be invested in the phi 600 of 3 ton ingot, the small-tonnage forging press such as a 1600 tons of forging press needs to be invested in the forging process, and accordingly the equipment investment is significantly reduced.
Owner:宁夏中色金航钛业有限公司

Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders

The method is suitable for the manufacture of flat or shaped titanium aluminide articles and layered metal matrix composites such as lightweight plates and sheets for aircraft and automotive applications, thin cross-section vanes and blades, composite electrodes, heat-sinking lightweight electronic substrates, bulletproof structures for vests, partition walls and doors, as well as for sporting goods such as helmets, golf clubs, sole plates, crown plates, etc. The method includes the following steps: (a) forming a porous preform of the reactive powder alloy or a porous multi-layer composite preform consisting of reactive powder metals and alloys by consolidation using at least one method selected from low-temperature loose sintering in vacuum, high-temperature loose sintering in vacuum, low-pressure sintering in an inert gas, cold pressing, direct powder rolling, isostatic or die pressing, and other means of room temperature and warm temperature consolidation, and / or combination thereof, to provide the density not less than 25% from the theoretical density of said reactive alloy; (b) hot consolidating by hot pressing said preform, hot rolling, hot isostatic pressing, or hot extrusion to obtain the density of 98-100% from the theoretical density of said reactive alloy; (c) additional sintering and / or annealing at the temperature being at least 900° C. to decrease the residual porosity, control the microstructure, and improve the mechanical properties, especially ductility and / or plasticity of the resulting metal sheets or layered composites. The hot pressing is carried out at the temperature ranging 950-1700° C., preferably at 1250-1450° C., and at pressure ranging 50-350 kg / cm<2>. The HIP is carried out at the temperature ranging 1250-1350° C. and at pressure ranging 15000-40000 psi. The layered composite preform is manufactured by individual loose sintering, one layer of the composite at a time, and assembling them in the desired order. The composite consists of layers of titanium and / or titanium hydride, Ti-6Al-4V alloy, alpha-titanium aluminide alloy, beta-titanium aluminide alloy, and gamma-titanium aluminide alloy in any combinations.
Owner:ADVANCED MATERIALS PRODS

Ceramic armor and method of making by encapsulation including use of a stiffening plate

A ceramic armor is disclosed in several embodiments. In a first embodiment, a metal base plate has a metal frame assembled on it having a central opening into which the ceramic material and stiffening plate are placed. A cover plate is placed over the frame to enclose the ceramic material on all sides. In a second embodiment, the frame has an open central area that has two crossing walls that define four sub-chambers. Four sets of ceramic material and stiffening plate are placed in the respective sub-chambers and a covering plate is placed over them. In a further embodiment, the frame has a plurality of cavities mechanically formed in it. A stiffening plate and a ceramic tile or plate are placed in each cavity and a cover plate is placed over the frame. The metal used to encapsulate the ceramic material may, if desired, comprise a Titanium alloy such as Ti-6Al-4V, and the ceramic material may comprise Silicon Carbide, Boron Carbide, Tungsten Carbide, Titanium Diboride, Aluminum Oxide or Aluminum Nitride. The stiffening plate is preferably made of a Ti—TiB cermet composite but may also be comprised of an armor ceramic such as WC, TiB2, Al2O3 or B4C. A hot pressing procedure is carried out on the armor to cause the metal to plastically deform about the encapsulated ceramic material.
Owner:BAE SYST ADVANCED CERAMICS

Process of direct powder rolling of blended titanium alloys, titanium matrix composites, and titanium aluminides

The present invention relates to the manufacture of fully dense strips, plates, sheets, and foils of titanium alloys, titanium metal matrix composites, titanium aluminides, and flat multilayer composites of said materials manufactured by direct rolling and sintering of blended powders. The resulting titanium alloy flat products are suitable in the aerospace, automotive, sporting goods, and other industries. The process includes the following steps: (a) providing a C.P. titanium matrix powder and at least one powder of alloying components such as elemental alloying powder, pre-alloyed master alloy powders, and / or hard reinforcing particles, (b) mechanical activation by attrition of all alloying components, whereby the particle size of attrited alloying powders is at least ten times smaller than the particle size of the matrix titanium powder, (c) blending titanium powder as a ductile matrix material with attrited alloying powders obtained in step (b), (d) cold direct powder rolling of the blend in a mill with horizontally-positioned rolls to achieve density of the rolled strip of 60±20% of the theoretical value, whereby diameters of rolls are different, so that the green strip is bent for the subsequent densification by a second horizontal re-rolling mill staying in line with the first powder rolling mill, and rotations of edging pair of rolls of at least one of the said mills differ in the rate by 5-15% to promote densification of the green strip by shear deformation, the diameter of the rolls of the direct powder rolling mill is 40-250 times larger than thickness of the rolled strip, (e) densification by cold re-rolling of the green strip in a horizontal rolling mill, whereby diameter of the rolls of the densification mill is 1.1-5 times larger than the diameter of rolls of the direct powder rolling mill to provide compressive action and avoid shearing action of the green strip and achieve density of the rolled strip in the range of 90±10%, (f) multiple cold re-rolling of the strip in vertically-positioned rolls at equal rotation rate of the edging rolls to achieve density of the green rolled strip about 100% of the theoretical value, and (g) sintering of near fully-dense green rolled strip in vacuum, or in protective atmosphere batch furnace, or in continuous belt furnace in protective atmosphere. Typical mechanical properties of fully-dense Ti-6Al-4V alloy strips manufactured by the process of the present invention are: tensile strength is 130-140 ksi (897-966 MPa), yield strength is 120-130 ksi (828-897 MPa), and elongation is over 10%.
Owner:ADMA PRODS

Method for preparing high-strength modified Ti-6Al-4V titanium alloy large-size rod

ActiveCN107760925AIncrease the content of α-phase stable elementsHigh strengthMetal-working apparatusTi 6al 4vIngot
The invention discloses a method for preparing a high-strength modified Ti-6Al-4V titanium alloy large-size rod. The method comprises the following steps: heating Ti-6Al-4V titanium alloy ingots obtained by vacuum arc re-melting under a condition of Tbeta+100 DEG C-Tbeta+160 DEG C, keeping the temperature, performing blooming fogging, sequentially heating under conditions of Tbeta-20 DEG C-Tbeta-50 DEG C and Tbeta+20 DEG C-Tbeta+100 DEG C, keeping the temperature, performing ramming fogging, rapidly cooling with water, performing ramming fogging under a condition of Tbeta-20 DEG C-Tbeta-60 DEGC, keeping the temperature, performing air cooling so as to obtain a blank, performing chamfering, rolling rounding and throwing rounding on the blank, performing thermal treatment, and performing air cooling, thereby obtaining the high-strength modified Ti-6Al-4V titanium alloy large-size rod, wherein the diameter of the titanium alloy rod is 180-220mm, the length of the titanium alloy rod is greater than 2000mm, the tensile strength Rm of the titanium alloy rod is greater than 960Mpa, and the yield strength RP0.2 of the titanium alloy rod is greater than 860Mpa. By slightly adjusting the contents of components of main elements in the titanium alloy, and with the combination of phase cross heating, large-deformation fogging and rapid water cooling processes, the strength of the titaniumalloy is improved, and the good matching of strength and plasticity is achieved.
Owner:NORTHWEST INSTITUTE FOR NON-FERROUS METAL RESEARCH

Low-cost and high-performance titanium alloy and preparation method thereof

The invention relates to a low-cost and high-performance titanium alloy and a preparation method thereof. The alloy is a quaternary titanium alloy which is formed by taking titanium as a main body element and additionally adding three elements. The alloy comprises the following components in percentage by mass: 1-5% of Fe, 0.1-0.4% of O, 0.1-0.3% of B and the balance of titanium and inevitable impurities. The preparation method comprises the following steps: adding the raw materials into a suspended smelting furnace of a cold crucible where argon is introduced in a designed alloy component proportion; repeatedly smelting for several times to obtain cast ingots; cogging and forging the cast ingots above the phase transformation point to form sheared billets; then rolling the sheared billet to form rods; thermally treating the sampled rods; and finally representing structure and performance of the rods. The preparation process is simple in method, and the prepared alloy is uniform in component. The tensile strength reaches over 950MPa, the ductility is not less than 15%, and the percentage reduction of area is not less than 25%. The basic mechanical property of the alloy is equivalent to that of Ti-6Al-4V but the cost has the advantage of over 15% compared with that of the Ti-6Al-4V. The alloy can replace part of titanium alloys which are relatively high in price in some fields.
Owner:NANJING UNIV OF TECH

Preparation method of double-scale crystalline grain Ti-6Al-4V material

InactiveCN102703756AProportional precision controlOvercome the defect that the ratio is difficult to control preciselyHigh energyTi 6al 4v
The invention discloses a preparation method of a double-scale crystalline grain Ti-6Al-4V material. The preparation method adopts a forming way combining a high energy ball milling process with a spark plasma sintering process, and comprises the following steps of: firstly, taking powder in a segmentation manner in the whole high energy ball milling process to obtain powder with different refining degrees, wherein the grain size distribution range of the ultrafine crystal powder is controlled to be between 100nm and 1 mu m, and the grain size distribution range of the nanocrystalline powder is controlled to be between 10nm and 100nm; then, compounding and uniformly mixing one of the powder serving as the raw material and the ultrafine crystal powder with the nanocrystalline powder according to any mass ratio; and finally, optimizing the spark plasma sintering process. By controlling the mixing proportion of the two powder, the proportion of a rough crystal zone and a fine crystal area in a double-scale crystalline grain Ti-6Al-4V material tissue can be accurately controlled, and the defect that the proportion of rough and fine crystals are difficult to be accurately controlled is overcome; and meanwhile, by optimizing the sintering parameters of the spark plasma sintering process, the material has an excellent comprehensive mechanical property.
Owner:SOUTH CHINA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products