Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2529 results about "Ingot casting" patented technology

Ingot casting method for quasi-monocrystalline silicon

The invention relates to an ingot casting method for quasi-monocrystalline silicon, which comprises the following steps of: (1) laying seed crystals at the bottom of a quartz crucible and adding a silicon material and a doping agent on the seed crystals; (2) vacuumizing and heating the crucible with the materials, raising the temperature in sections to melt the silicon material on the upper part, when the seed crystals begin to melt at the later stage of melting, controlling the temperatures and heating rates of a heater and the bottom of the crucible to partially melt the seed crystals and then entering a crystal growing stage; (3) cooling the heater in sections at the stage of crystal growing to make silicon crystals grow along the direction of unmelted seed crystals, and annealing and cooling after the silicon crystals grows to obtain large-gain silicon ingots; and (4) performing subsequent treatment on the large-grain silicon ingots to obtain the quasi-monocrystalline silicon. In the method, melting and crystal growing and the like are finished in the same equipment and in the same crucible, and the seed crystals are melted by controlling the temperature of the bottom of the crucible and the heating rate of the heater, so that the method has the advantages of low cost, easy operation and suitability for mass production; and the prepared quasi-monocrystalline silicon has high conversion efficiency, and the seed crystals can be recycled.
Owner:晶海洋半导体材料(东海)有限公司 +1

Forging machining method of large-sized bar materials of TC4 (Ti-6Al-4V) titanium alloy

The invention relates to bar material forging machining method of titanium alloy, particularly to a forging machining method of large-sized bar materials of TC4 (Ti-6Al-4V) titanium alloy. The forging machining method is characterized by comprising the following steps of step 1, performing cogging forging, step 2, performing intermediate forging above a phase transformation point, step 3, performing intermediate forging below the phase transformation point, step 4 and step 5, performing finished product forging and obtaining the phi 200 to 300 mm and 2000 to 3000 mm length of large-sized bar materials of the TC4 titanium alloy finally. Compared with the prior art, a large-sized ingot casting and a large-tonnage forging device are not required and the industrialized production can be achieved through an ordinary industrial 3 ton ingot and a small-tonnage forging press and the equipment investment is small, only a 3 tons of electric arc furnace and a 3000 tons of forming oil press which is matched with the electric arc furnace need to be invested in the phi 600 of 3 ton ingot, the small-tonnage forging press such as a 1600 tons of forging press needs to be invested in the forging process, and accordingly the equipment investment is significantly reduced.
Owner:宁夏中色金航钛业有限公司

Flying shear blade and preparation method thereof

The present invention discloses a flying shear blade. The component has the weight percentage that C is 0.40-0.70, Si is 0.50-1.20, Mn is 0.20-0.50, Cr is 4.00-6.00, Mo is 0.50-2.00, V is 0.30-1.50, P is less than or equal to 0.02, S is less than or equal to 0.02, and Fe and inevitable impurity are the residual. The present invention provides a manufacture method of electric furnace smelting, and ingot casting; hydrogen removing and annealing treatment, and forging; preliminary heat treatment, rough machining, quenching and tempering heat treatment (primary quenching and high temperature tempering), semi finishing, ultimate heat treatment (secondary quenching, primary low temperature tempering, and secondary low temperature tempering), and fine finishing. By effectively controlling the material texture and the morphology, the quantity, the size and the distribution of carbonide, the quenching temperature and the tempering temperature of the quenching and tempering heat treatment, and the quenching temperature and the tempering temperature of the ultimate heat treatment are controlled, the texture crystal grains are more refined, the carbonide is distributed in a dispersed way, and simultaneously, the thermal stability and the retentivity are remarkably enhanced, thereby being advantageous for improving the operational performance of the blade.
Owner:BAOSHAN IRON & STEEL CO LTD +1

Production method of large polycrystalline ingot

The invention relates to the technical field of ingot casting of solar energy batteries, in particular to a production method of a large polycrystalline ingot. Silicon nitride and water are mixed uniformly through electric mixing for 15-30 minutes, and the mixture is used as a coating liquid, the coating liquid is uniformly coated on the inner surface of a crucible after the crucible is preheated, and then high-temperature baking is carried out on the crucible, a silicon material is loaded in the baked crucible, and then charging is carried out on the crucible loaded with the silicon material, shielding gas-argon passes through a polycrystalline furnace after vacuumizing is carried out on the polycrystalline furnace, the polycrystalline furnace is heated to melt the silicon material, and then, the melted silicon material is gradually crystallized from the bottom part to the top part through directional solidification, and then discharging is carried out after gradual cooling is carried out through high-temperature annealing, the crucible is disassembled after the discharged polycrystalline ingot is cooled at room temperature, so as to obtain the polycrystalline silicon ingot which is sliced to prepare the battery. The large charging amount is realized, the capacity of the casting ingot is improved, the utilization rate of the polycrystalline ingot is improved, the cost is reduced, the requirements of a high-load slicer are met, and the crystal quality is kept to be unchanged.
Owner:TRINA SOLAR CO LTD

Free-forging shortening method and anvil at ultralimit aspect ratio

InactiveCN101491822AEnough marginRelaxed environmentForging/hammering/pressing machinesIngot castingMaterials science
The invention discloses a flat die forging high slenderness ratio ultralimit upsetting method and a flat die forging high slenderness ratio ultralimit upsetting anvil. The upsetting method comprises the following steps: positioning an upper concave anvil and a lower concave anvil, and guaranteeing superposition of a central line of the upper concave anvil and a central line of the lower concave anvil; suspending circular cast ingots of which the slenderness ratio is more than 3 on the lower concave anvil, and adjusting the position to guarantee superposition of central lines of the aluminum alloy circular cast ingots, the central line of the upper concave anvil and the central line of the lower concave anvil; and allowing a power mechanism to drive the upper concave anvil to move down after the adjustment is over, and slowly applying pressure on the aluminum alloy circular cast ingots, so that the aluminum alloy circular cast ingots are stably upset and do not have the defects of bending, folding and the like. The invention breaks through impassable rules of aluminum alloy upsetting in the recent hundred years, and makes the slenderness ratio of the aluminum alloy circular cast ingots be more than 3 and reach 3.3 (phi 820*2,700mm), namely the length of the circular cast ingots increases 240 mm and the weight of the circular cast ingots increases 360 kg after the length of phi 820 mm circular cast ingots increases from 2,460 mm to 2,700 mm, so that the invention provides enough metal margin and creates a loose environment for development of aluminum alloy annular forged pieces.
Owner:SOUTHWEST ALUMINUM GRP

Method for purifying and ingot casting multi-temperature zones silicon material and apparatus thereof

The invention provides a method and a device used for purifying and ingot-casting of multi-temperature area silicon material; the silicon material is added into a crucible after a fluxing medium is added; the silicon material is inductively heated, fused and vacuum-smelted; furthermore, oxidative gas is added to carry out the reaction; subsequently, temperature reducing and directional solidification are carried out to the silicon material to form silicon ingots by crystallization. The device comprises a crucible system, a lifting device, an induction heater and a resistance heater; the induction heater is arranged on the upper surface of the resistance heater so as to respectively form an induction heating area and a resistance heating area; the lifting device is arranged on the lower surface of the resistance heating area and can move up and down in the induction heating area and the resistance heating area; and the crucible system is arranged on the lifting device. The method and the device can be used for purifying and ingot-casting the silicon ingot with high purity and high purification efficiency, can complete the whole process in one furnace body and can save the time and energy resource.
Owner:PROPOWER RENEWABLE ENERGY SHANGHAI

Method for recovering silicon material from waste materials in cutting crystalline silicon by diamond wire

The invention discloses a method for recovering silicon material from waste materials in cutting crystalline silicon by a diamond wire. The method is characterized by comprising the following steps of: feeding the collected waste materials to a centrifugal machine to centrifuge and settle, thus obtaining silicon material sediment; carrying out solid-phase rinsing on the silicon material sediment to remove organic matter type impurities and part of diamond powder from residual liquid in solid, thus obtaining silicon powder with certain purity; pickling the solid-phase silicon powder with hydrochloric acid to remove metal impurities; after rinsing the silicon powder subjected to hydrochloric acid pickling with pure water, rinsing the silicon powder with hydrofluoric acid to remove oxide from the surface of the silicon powder; carrying out ultrasonic rinsing and drying on the silicon material rinsed with hydrofluoric acid; carrying out directional solidification, ingot casting and purification on the dried silicon material, thus obtaining a solar grade silicon material; and at last, carrying out packaging after smashing, pickling, rinsing and drying the silicon material. The method is simple and convenient, the equipment cost is low, the operation is easy to control, the treatment recovery rate is high and the overall recovery rate can achieve over 99.99%.
Owner:ZHENJIANG HUANTAI SILICON TECH

Method and device for preparing semi-solid state slurry through intensive cooling stirring

The invention discloses a method for preparing semi-solid state slurry through intensive cooling stirring. The method comprises the following steps: placing overheated alloy melt in a crucible or a casting ladle, descending a rotary stirring shaft internally introduced with a circular cooling medium in the alloy melt through a lifting device, driving the convection heat exchange of the alloy melt through stirring, continuously cooling the rotary stirring shaft through the circular cooling medium, stirring for a fixed period of time or cooling the melt to a set temperature, raising the rotary stirring shaft to prepare the semi-solid state slurry and form an ingot casting; closing the casting ladle containing the semi-solid state slurry to formation equipment and pouring the semi-solid state slurry into a cavity or material chamber of the formation equipment to take the shape; and taking out a formed part and moving the crucible or the casting ladle back to an original position and filling the overheated alloy melt to perform the next semi-solid state slurry preparation. The invention further provides a device for realizing the above method. Through the adoption of the method and device provided by the invention, large volume of semi-solid state slurry can be prepared once, and the semi-solid state slurry can be continuously produced in batch, and then the rheolytic formed part can be prepared through the combination of pressure casting, rolling, die-forging and other conventional formation equipment.
Owner:SHANGHAI INST OF TECH

Preparing method for nanometer toughening ultra-fine grain WC-Co cemented carbide

ActiveCN107475548AUniform particle sizeNarrow normal distribution of particle sizePorosityFlexural strength
The invention discloses a preparing method for nanometer toughening ultra-fine grain WC-Co cemented carbide. The preparing method for the nanometer toughening ultra-fine grain WC-Co cemented carbide comprises the following steps of that 0.1-0.5 micron ultra-fine powder of WC hard phase and Co binder phase is prepared by adopting an airflow crushing classification method and a high-pressure water atomization method correspondingly, and the ultra-fine grain cemented carbide is prepared through material matching and nano-metal mixed additives adding, airflow mixed powder sieving, ball milling waxing and drying sieving, mold pressing and cold isostatic pressing molding and pressure sintering and heat treating, wherein the nano-metal mixed additives are prepared by adopting vacuum electric arc smelting ingot casting plus rapid-in-situ packaging plasma arc process discharging method. The nano-metal mixed additives play the role of refining the cemented carbide granules, improving the material wettability, reducing the porosity and enhancing the local grain boundary strength, so that macro performances such as hardness, flexural strength and fracture toughness of the alloy are improved greatly. The preparing method for the nanometer toughening ultra-fine grain WC-Co cemented carbide has the advantages of being high in production efficiency, low in production cost, high in product quality and purity, and a great deal of man-hour and energy consumption are saved.
Owner:SHENYANG SHENGSHI WUHUAN TECH CO LTD

Method for preparing TC4 titanium alloy ingot casting through electron beam cold bed hearth smelting

The invention discloses a method for preparing TC4 titanium alloy ingot casting through electron beam cold bed hearth smelting. The method comprises steps as follows: 1, uniformly mixing sponge titanium and aluminum shot, pressing to obtain electrode slabs, and welding to obtain an electrode, then transferring into a vacuum consumable electro-arc furnace to smelt once to obtain Ti-Al intermediate alloy; 2, crushing the Ti-Al intermediate alloy to obtain Ti-Al intermediate alloy particles; and 3, uniformly mixing the sponge titanium, the Al-V intermediate alloy and the Ti-Al intermediate alloy particles, pressing to obtain electrode slabs, and splicing the electrode slabs to obtain the electrode, and then transferring into an electron beam cold bed hearth to smelt once to obtain the TC4 titanium alloy ingot casting. According to the method, the Ti-Al intermediate alloy is used for replacing the aluminum shot, so that volatilization of an Al element is reduced, utilization rates of raw materials are improved, and service efficiency of the electron beam cold bed hearth is improved; the method has stronger advantages of reducing processing cost of a titanium material and improving production efficiency, because the electron beam cold bed hearth is adopted for one-time smelting; and cleanliness of the titanium alloy ingot casting can be improved, so that a high-quality ingot casting can be obtained.
Owner:NORTHWEST INSTITUTE FOR NON-FERROUS METAL RESEARCH

Method for preparing high-performance Cu-Fe deformation in-situ composite material by magnetic field treatment

The invention provides a method for preparing a high-performance Cu-Fe deformation in-situ composite material by magnetic field treatment, which is characterized in that the Cu-Fe deformation in-situ composite material in the method is finally prepared into a formed copper material through technical process flows of material proportioning, smelting, casting or continuous casting, magnetic field control solidification, hot forging or hot milling, solid solution treatment, cold milling, cold pulling and magnetic field ageing control. The magnetic field is exerted in the ingot casting solidification process, the solidification of the Cu-Fe deformation in-situ composite material is controlled, Fe dendritic crystals carry out extremely obvious thinning, and the Fe aliquation is reduced, so the material disperses and distributes the uniform and fine Fe fiber phase in a base body after the subsequent cold deformation processing, and the intensity of the material is greatly improved. The magnetic field is exerted in the ageing process treatment process for promoting the Fe separation, increasing the separation amount of Fe particles, reducing the separation phase dimension and promoting the separation phase dispersion distribution, so the conductivity of the material is greatly improved, and the intensity of the material is further improved. The preparation process is simple, and the cost is low. The invention is applicable to the preparation of the high-performance Cu-Fe deformation in-situ composite material or other similar materials.
Owner:INST OF APPLIED PHYSICS JIANGXI ACADEMY OF SCI

Technology for recovering production of electrolytic zinc powder and lead powder from smelting ash through alkali leaching method

The invention discloses a technology for the recovering production of electrolytic zinc powder and lead powder from smelting ash through an alkali leaching method. The technology comprises a step of copper removal of lead powder, a step of ingot casting for lead removal through electrodeposition, a step of lead removal through using sodium sulfide, a step of arsenic and antimony removal and a step of zinc powder electrodeposition. The technology is characterized in that chemical components in the smelting ash are analyzed, and the smelting ash is leached through a sodium hydroxide leaching agent; the electrolytic lead powder is added to the resultant leachate to remove copper; the electrolytic lead powder is produced through electrodeposition of the resultant copper removed solution; residual lead in the resultant lead removed liquid is separated and deposited through adopting the sodium sulfide as a lead removal agent; arsenic and antimony in the lead removed liquid are removed; and the arsenic and antimony removed purified liquid undergoes electrodeposition to produce zinc powder, and an electrolytic waste liquid returns to the leaching operation as an alkaline leaching agent, or enters the purification operation for removing impurity ions from the waste liquid and then returns to the leaching operation as the alkaline leaching agent for recycle. The technology which can process different types of zinc-containing dust waste materials has the advantages of simple operation, less equipment investment, high zinc and lead recovery rate, and loop cycle, no wastewater discharge and environmental protection in the whole technological process.
Owner:江西自立环保科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products