Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3959 results about "Solution treatment" patented technology

Solution treatment is a broad term in heat treating used to refer to the heating of a material to temperatures sufficient for the dissolution of its soluble phases. It is then held for a time until it is quenched, causing the material to retain the properties of the solution.

CuCrZr alloy with high strength and high conductivity, and preparation and processing method thereof

The invention relates to a CuCrZr alloy with high strength and high conductivity, and a preparation and processing method thereof. The alloy comprises the basic ingredients in percentage by mass: 0.3 percent to 1.4 percent of Cr, 0.02 percent to 0.25 percent of Zr and the balance Cu, wherein the ingredients in the CuCrZr alloy are needed to meet the following requirements: (a) Cr/Zr is less than or equal to 5 and is greater than or equal to 1.9; and (b) Cr+Zr is less than or equal to 1.5 percent and is greater than or equal to 0.4 percent. The preparation and processing method comprises the following steps of: a, compounding, feeding, smelting and casting according to mass percent; b, surface milling; c, hot rolling; d, solution treatment; e, primary cold rolling; f, primary aging; g, secondary cold rolling; and h, secondary aging. The CuCrZr alloy has the tensile strength sigma b being 600-700 MPa, the plasticity elongation rate delta being 4-10 percent, and the conductivity being greater than 80 percent of IACS (International Annealed Copper Standard), can be widely applied to occasions with high strength and high conductivity for preparing resistance welding electrodes, liners of crystallizers of continuous casting machines, integrated circuit lead frame and the like.
Owner:GENERAL RESEARCH INSTITUTE FOR NONFERROUS METALS BEIJNG

Automotive high-formability aluminum alloy material and preparation method thereof

InactiveCN104018040AUniform and small sizeExcellent stamping formabilitySolution treatmentQuenching
The invention provides an automotive high-formability aluminum alloy material and a preparation method thereof. The preparation method comprises the steps of selection of novel aluminum alloy components, alloy preparation and melting-casting, homogenization, hot rolling deformation, intermediate annealing or cold rolling deformation and intermediate annealing, intermediate annealing, solution treatment, quenching and multistage pre-ageing treatment. By using the double effects that a certain quantity of multi-scale particles can be formed among different solute elements in the alloy material and then oversize particles are stimulated, re-crystallized and nucleated while fine particles block the growth of the re-crystallized grains in the high-temperature heat treatment process, so that the structure of an alloy plate is formed by the fine and uniformly distributed re-crystallized grains, the anisotropy of the alloy plate is well controlled, and the stamping forming performance is relatively excellent. Meanwhile, the novel aluminum alloy with high formability and high baking varnish hardening increment is very suitable for manufacturing of automotive body outer plates, particularly manufacturing of parts having relatively high requirements for stamping formability and baking varnish hardening increment and having complex shapes.
Owner:UNIV OF SCI & TECH BEIJING

Ultra pure electroslag remelting method for high-performance corrosion resistant alloy

The invention relates to an ultra pure electroslag remelting method for a high-performance corrosion resistant alloy, and the method comprises the following steps of: preparing the following ingredient components of a self-fluxing electrode bar in parts by weight: 25-34 parts of Ni, 25-29 parts of Cr, 2.5-4.5 parts of Mo and 30-45 parts of Fe, and carrying out vacuum induction melting, so as to obtain the self-fluxing electrode bar; slowly melting the self-fluxing electrode bar in melted electroslag remelting slag charge comprising the following components in parts by weight: 55-80 parts of CaF2, 5-25 parts of CaO, 5-15 parts of Al2O3 and 5-10 parts of MgO, purifying, and recrystallizing in a crystallizer, so as to obtain an electroslag ingot; and forging the electroslag ingot into a bar material at the temperature of 1130+/-5 DEG C, and carrying out solution treatment, so that the high-performance corrosion resistant alloy is obtained. By utilizing the ultra pure electroslag remelting method provided by the invention, the content of harmful elements such as sulphur and phosphorus in the alloy can be reduced, the impurity distribution of the alloy is improved, fining of structure can be facilitated, and the hot workability and yield of the alloy can be improved.
Owner:CHONGQING MATERIALS RES INST

Method and tooling for controlling deformation of nickel-based ageing-strengthening high-temperature alloy casing welding assembly

The invention relates to the technical field of welding, in particular to a method for controlling deformation of a nickel-based ageing-strengthening high-temperature alloy casing welding assembly, and a piece of technological equipment of the method. According to the method, the welding deformation is controlled by using rigid limit of materials with close linear expansion coefficients, a tooling structure that can meet rigid supporting requirements during welding as well as control and eliminate residual stress deformation during welding is adopted, after an inner ring and eight T-shaped supporting plate components form an eight-diagram structure, a heat treatment process at the temperature of 550 DEG C for eliminating stress is additionally performed so as to reduce residual stress between the inner ring and the roots of the supporting plates before electron beam welding; after all welding processes are completed, a vacuum solution treatment process at the temperature of 970 DEG C is additionally performed, and a double aging treatment process at the temperature of 720 DEG C and 620 DEG C is further additionally performed to completely eliminate residual internal stress after welding so as to achieve service performance. According to the invention, the problems that the conventional combustion engine can not control fatigue crack, and requirements on the reliability and the service life of the combustion engine can not be met are solved; by adopting the novel welding technology method and the technological equipment, the investment is small, the operation is simple and the engineering application is facilitated.
Owner:SHENYANG LIMING AERO-ENGINE GROUP CORPORATION

Austenic stainless steel strip and manufacturing method thereof

The invention discloses an austenitic stainless steel belt and a manufacturing method thereof. The invention is characterized by comprising the following chemical elements in terms of weight percentage: 0.04 to 0.12 percent of C, 0.4 to 1. percent of Si, 0.8 to 2 percent of Mn, less than or equal to 0.04 percent of P, less than or equal to 0.03 percent of S, 17 to 19 percent of Cr, 7 to 10 percent of Ni, 0.25 to 0.5 percent of Cu and the balance of Fe and inevitable impurities. The manufacturing method comprises the following steps: smelting; continuous casting with thin belts; control of cooling and winding; acid pickling, direct cold rolling and annealing; acid pickling again and cold rolling to achieve the thickness of a finished product; annealing after achieving the thickness of the finished belt steel, acid pickling, leveling, and length cutting into a finished coil. By utilizing the element of Cu, the invention reduces the use amount of Ni in the steel, reduces the production cost, simultaneously reduces the content of the residual ferrite in the steel, improves the wearing resistance of the steel, adopts direct cold rolling to match the high-temperature annealing procedure, and saves the procedures of hot rolling and solution treatment so as to lead the production process to be simple and stable.
Owner:BAOSHAN IRON & STEEL CO LTD

Martensite stainless steel and preparation method for flat strip of martensite stainless steel

The invention discloses martensite stainless steel and preparation method for flat strips of martensite stainless steel. The martensite stainless steel comprises following chemical components by weight percentage: C 0.02 to 0.06%, Si 0.3 to 0.5%, Mn 1.0 to 1.5%, Ni 8.5 to 9.0%, Cr 17.5 to 18.5%, Ti 0.4 to 0.6%, P no more than 0.009% and S no more than 0.009%, with the balance being Fe. The preparation method for flat strips of the martensite stainless steel comprises the following steps: a) weighing above-mentioned chemical components at desired weight percentage; b) carrying out vacuum induction melting; c) carrying out casting to obtain remelt electrode bars; d) carrying out electroslag remelting to obtain steel ingots; e) forging steel ingots into billets; f) processing billets into round strips; g) carrying out solid solution treatment; h) drawing treated blanks into wires; i) preparing flat strips. According to the invention, equivalents of nickel and chromium are strictly controlled, the ratio of C to Ti and alloy elements are optimized, EVR smelting is carried out and such alloying elements as C, Si, Mn and Ti are added, thereby enabling formation of a metastable austenite structure; a predeformed phase-changed martensite wire material is obtained by wire drawing; and the ultra high strength deformed flat strips of martensite stainless steel are obtained by flat strip rolling.
Owner:CHONGQING MATERIALS RES INST

Machining method of high-quality large-diameter thin-wall metal barrel body

The invention relates to a machining method of a high-quality large-diameter thin-wall barrel body. The machining method comprises the following steps. Firstly, isothermy or hot die anti-extrusion technology is utilized, and anti-extrusion is performed on an alloy forging rod. Secondly, machining is performed on the inner and outer surfaces of a spinning barrel billet, and finish turning is performed on the inner surface of the barrel bottom of the barrel billet. Thirdly, multi-pass brute force thinning spinning is performed on the machined spinning barrel billet, and the spinning is hot spinning or cold spinning. Fourthly, intermediate heat treatment is performed on a spinning semi-finished product, and the intermediate heat treatment is annealing or solution treatment. Fifthly, the third step and the fourth step are performed repeatedly and alternatively so that finished product spinning is performed. Sixthly, scouring and cleaning are performed on the barrel body, and finished product heat treatment is performed. Seventhly, polishing of the inner and outer surfaces of the barrel body after heat treatment in the sixth step is performed, and a finished product barrel body is obtained. By adoption of the machining method of the high-quality large-diameter thin-wall barrel body to machine a large-diameter thin-wall metal barrel body without welding lines, organization is even and fine, comprehensive performance is high, the process is short, product additional values are high, and good application and popularizing prospects and certain economic and social benefits are achieved.
Owner:有研金属复材技术有限公司

Preparation method of micro/nano-structure ultrahigh-strength plastic stainless steel containing Nb

The invention belongs to the field of production of ultrahigh-strength plastic alloy steel, and relates to a preparation method of micro/nano-structure ultrahigh-strength plastic stainless steel containing Nb. The preparation method comprises the steps of: firstly preparing materials according to a composition proportion, adding 0.05-0.15% of Nb element on the basis of 316L austenitic stainless steel, then carrying out vacuum induction furnace smelting, casting blank forging, forged piece hot rolling and solution treatment, carrying out cold deformation on the steel plate which undergoes the solution treatment with deformations of 40%, 60%, 80% and 90% and with single reduction in pass controlled within 3-10% to prepare steel plate with different cold deformations, annealing the steel plate which undergoes the cold deformation with heating rate controlled at 50-200 DEG C/s, with heating temperature within 750-950 DEG C and with heat preservation time within 5-100s, and cooling to the room temperature at a cooling rate of 50-400 DEG C/s to obtain a superfine austenite structure with micro-nano scale. The obdurability of the material is synchronously improved. The yield strength of the final product can be up to 750-800MPa, the strength of extension is up to 1100-1200MPa and the percentage of elongation is 35-45%.
Owner:UNIV OF SCI & TECH BEIJING

High-strength and high-Gd-content deformed magnesium alloy and preparing method thereof

The invention provides a high-strength and high-Gd-content deformed magnesium alloy and a preparing method thereof. The magnesium alloy comprises the following elements of Mg, Gd, Zn and one or more kinds of Y, Zr and Mn. The preparing method includes the following steps that a magnesium alloy cast ingot high in Gd content is prepared; after the magnesium alloy cast ingot is subjected to two steps of T4 solution treatment, quenching is conducted at the temperature ranging from 80 DEG C to 100 DEG C, and a T4-state magnesium alloy cast ingot is obtained; the T4-state magnesium alloy cast ingot is subjected to different-temperature extrusion forming and is then quenched at the temperature ranging from 15 DEG C to 30 DEG C, and a bar or plate is obtained; and the bar or plate is subjected to cold rolling and cold drawing deformation at the room temperature, then artificial aging is conducted, and a T10-state deformed magnesium alloy, namely the high-strength and high-Gd-content deformed magnesium alloy is obtained. According to the high-strength and high-Gd-content deformed magnesium alloy and the preparing method thereof, the preparing technology is simple, the performance is stable, the success rate is high, the production efficiency is high, and the high-strength and high-Gd-content deformed magnesium alloy and the preparing method thereof are easily applied to industrial production.
Owner:SHANGHAI JIAO TONG UNIV

High-strength, high-conductivity and high-extensibility rare earth copper alloy and preparation method thereof

A high-strength, high-conductivity and high-extensibility rare earth copper alloy and a preparation method thereof are disclosed. The alloy is composed of following components in percentage by weight: 0.5 to 1.5% of chromium, 0.3 to 0.5% of zirconium, 0.1 to 0.3% of nickel, 0.2 to 0.5% of titanium, 0.2 to 0.4% of manganese, 0.02 to 0.15% of rare earth elements and the balance of copper and inevitable impurity elements, wherein the rare earth elements are one or two elements of erbium and lanthanum. The preparation method comprises following steps: preparing intermediate alloy, smelting, moulding, casting, treating solid solution, drawing to deform, performing an aging treatment, and a cold rolling treatment. The components and the ratio of the components are limited to let each component have a combined action, thus the comprehensive properties of the alloy material are prominently improved: the extension strength is larger than 630 MPa, the hardness is larger than 190 HV, the ductility is larger than 10%, the conductivity is larger than 80%IACS, and the softening temperature is larger than 520 DEG C; and the rare earth copper alloy can satisfy the requirements of materials in the electronic industry such as lead frame on copper alloy performances.
Owner:HENAN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products