Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1440 results about "Austenitic stainless steel" patented technology

Austenitic stainless steel is a specific type of stainless steel alloy. Stainless steels may be classified by their crystalline structure into four main types: austenitic, ferritic, martensitic and duplex. Austenitic stainless steels possess austenite as their primary crystalline structure (face centered cubic). This austenite crystalline structure is achieved by sufficient additions of the austenite stabilizing elements nickel, manganese and nitrogen. Due to their crystalline structure, austenitic steels are not hardenable by heat treatment and are essentially non-magnetic.

Integral manufacturing method of S-04/S-08 high-strength stainless steel three-dimensional flow shrouded impeller

The invention provides an integral manufacturing method of an S-04/S-08 high-strength stainless steel three-dimensional flow shrouded impeller. The integral manufacturing method comprises the steps of firstly, establishing an impeller three-dimensional model, and carrying out slicing treatment; determining the forming direction and support adding positions according to structural characteristics of the impeller; setting parameters of a laser selective melting forming processing technology according to characteristics of a high-strength stainless steel material; forming under protection of an inert gas; after forming, cleaning floating powder, removing a base plate through linear cutting, and removing supports; and finally, carrying out follow-up treatment such as surface treatment and thermal treatment on the impeller. According to the integral manufacturing method, complex cutters or fixtures do not need to be designed, materials can be directly added for part manufacturing only through the three-dimensional model of the impeller, the manufacturing cycle is greatly shortened, and the integral manufacturing method is applicable to trial manufacturing and middle and small-batch production in the development stage.
Owner:XIAN SPACE ENGINE CO LTD

Girth welding technology for vacuum container

ActiveCN102357741AGuaranteed absolute penetrationAvoid the phenomenon of localized high temperatureArc welding apparatusWorkpiece edge portionsShielded metal arc weldingButt welding
The invention discloses a girth welding technology for a vacuum container, which comprises the following steps: processing beveled edges, assembling and welding. In the step of processing the beveled edges, a 14mm thick 0Cr18Ni9 austenitic stainless steel material is selected as a cylinder base material, X-shaped beveled edges are adopted, an inside beveled edge is processed for 10mm with a single-side angle of 32.5 degrees, an outside beveled edge is processed for 4mm with a single-side angle of 35 degrees, and no truncated edge is left. In the step of assembling, reserved clearances of 2.0-2.5mm are assembled, argon tungsten-arc welding is adopted to position, a positioning welding length is 10-15mm, an interval is 200mm, and then a 'strut having a shape of Chinese character 'mi' which is used for adjusting the roundness of a cylinder is welded in the cylinder. In the step of welding, an argon arc welding double-gun butt-welding method is used for bottoming the interior of the cylinder, two layers are filled in an inner welding bead of the cylinder in the manner of manual arc welding, an external welding bead is covered in the manner of submerged-arc welding, and finally, the inner welding bead is covered in the manner of manual arc welding. The girth welding technology can be used for controlling the welding deformation and has the advantages that the method is simple and is easy to realize.
Owner:无锡市创新低温环模设备科技有限公司

Austenic stainless steel strip and manufacturing method thereof

The invention discloses an austenitic stainless steel belt and a manufacturing method thereof. The invention is characterized by comprising the following chemical elements in terms of weight percentage: 0.04 to 0.12 percent of C, 0.4 to 1. percent of Si, 0.8 to 2 percent of Mn, less than or equal to 0.04 percent of P, less than or equal to 0.03 percent of S, 17 to 19 percent of Cr, 7 to 10 percent of Ni, 0.25 to 0.5 percent of Cu and the balance of Fe and inevitable impurities. The manufacturing method comprises the following steps: smelting; continuous casting with thin belts; control of cooling and winding; acid pickling, direct cold rolling and annealing; acid pickling again and cold rolling to achieve the thickness of a finished product; annealing after achieving the thickness of the finished belt steel, acid pickling, leveling, and length cutting into a finished coil. By utilizing the element of Cu, the invention reduces the use amount of Ni in the steel, reduces the production cost, simultaneously reduces the content of the residual ferrite in the steel, improves the wearing resistance of the steel, adopts direct cold rolling to match the high-temperature annealing procedure, and saves the procedures of hot rolling and solution treatment so as to lead the production process to be simple and stable.
Owner:BAOSHAN IRON & STEEL CO LTD

Preparation method of micro/nano-structure ultrahigh-strength plastic stainless steel containing Nb

ActiveCN102994905AImprove stabilityGrain refinement is obviousMicro nanoSS - Stainless steel
The invention belongs to the field of production of ultrahigh-strength plastic alloy steel, and relates to a preparation method of micro/nano-structure ultrahigh-strength plastic stainless steel containing Nb. The preparation method comprises the steps of: firstly preparing materials according to a composition proportion, adding 0.05-0.15% of Nb element on the basis of 316L austenitic stainless steel, then carrying out vacuum induction furnace smelting, casting blank forging, forged piece hot rolling and solution treatment, carrying out cold deformation on the steel plate which undergoes the solution treatment with deformations of 40%, 60%, 80% and 90% and with single reduction in pass controlled within 3-10% to prepare steel plate with different cold deformations, annealing the steel plate which undergoes the cold deformation with heating rate controlled at 50-200 DEG C/s, with heating temperature within 750-950 DEG C and with heat preservation time within 5-100s, and cooling to the room temperature at a cooling rate of 50-400 DEG C/s to obtain a superfine austenite structure with micro-nano scale. The obdurability of the material is synchronously improved. The yield strength of the final product can be up to 750-800MPa, the strength of extension is up to 1100-1200MPa and the percentage of elongation is 35-45%.
Owner:UNIV OF SCI & TECH BEIJING

Austenitic stainless steel metallographic etchant, preparing method and use thereof

The invention discloses a metallographic-phase aggressive agent of an austenitic stainless steel, a preparation method thereof and application thereof. The metallographic-phase aggressive agent comprises the mixed solution of hydrofluoric acid and nitric acid, calculated by volume ratio, the proportion of each component of the agent is that hydrofluoric acid : nitric acid : water is equal to 2 : 1 : 7. The preparation method thereof is carried out according to the following steps of: taking 70ml of water first, then taking 10ml of analytically pure nitric acid and finally taking 20ml of analytically pure hydrofluoric acid, which are then evenly mixed. The application method thereof comprises the following steps of: putting a simple of the austenitic stainless steel in the metallographic-phase aggressive agent of the austenitic stainless steel and observing the color change of the surface of the sample by time, taking out the sample of the austenitic stainless steel when metallographic-phase surface of the sample is corroded to darker silver gray, washing the sample with water which is then neutralized with alkaline solution and finally washing with water and absolute ethyl alcohol. The technical effects thereof are represented by good corrosion effect, clear austenite grain boundary, slow corrosion speed, easy control, no pollution and other aspects.
Owner:董加坤
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products