Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5509 results about "Base metal" patented technology

A base metal is a common and inexpensive metal, as opposed to a precious metal such as gold or silver. A long-time goal of alchemists was the transmutation of a base (low grade) metal into a precious metal. In numismatics, coins often derived their value from the precious metal content; however, base metals have also been used in coins in the past and today.

Disc brake rotor assembly and method for producing same

Novel composite disc brake rotor assemblies are provided, along with novel and efficient methods for manufacturing them. Preferably, the rotor assemblies comprise annular wear plates formed of particle reinforced aluminum-based metal matrix composite (MMC), ceramic matrix composite (CMC), or of ‘carbon graphite foam.’ The wear plates, made of a first material, are attached to annular surfaces of a central rotor, made of a second material, by fusing bonding layers between the wear plates and the rotor surfaces. The bonding layers are comprised of at least one of a metal alloy having a melting temperature lower than that of either the first or second materials, and a high-temperature adhesive. Preferably, the wear plates comprise projections that are positioned within adjacent receiving recesses in the center rotor. The bonding layers and projections enhance thermal and acoustical transference between the wear plates and the center rotor section. Carbon graphite foam provides for substantially enhanced heat transference. Use of the fusable binding layer, or adhesive provides for an efficient, low cost method of manufacturing for composite disc brake rotor assemblies.
Owner:BENMAXX

Titanium group powder metallurgy

Methods and compositions relating to powder metallurgy in which an amorphous-titanium-based metal glass alloy is compressed above its glass transition temperature Tg with a titanium alloy powder which is a solid at the compression temperature, to produce a compact with a relative density of at least 98%.
Owner:MYRICK JAMES J

Golf club head

InactiveUS7344452B2Position of the center of gravity can be designed more easilySimple designGolf clubsRacket sportsMetallic materialsEngineering
A golf club head includes a front body formed of a titanium-based metal material, an FRP body, a metallic sole plate, and a weight member. The front body has a face portion, a metal sole portion, a metal side portion (toe), a metal crown portion, a metal side portion (heel), and a hosel portion. A slight gap is formed between a front side of the sole plate and the metal sole portion. Preferably, the front body is made of a titanium alloy, while the sole plate is made of stainless steel.
Owner:BRIDGESTONE SPORTS

Downhole oilfield apparatus comprising a diamond-like carbon coating and methods of use

Downhole apparatus and methods of using the apparatus are described, the apparatus comprising at least one metallic component having a DLC coating thereon, the coating present at least on one or more internal passageways of the base metal or alloy to be exposed to downhole environments. Methods of using an apparatus in downhole oilfield operations are also described. This abstract allows a searcher or other reader to quickly ascertain the subject matter of the disclosure. It will not be used to interpret or limit the scope or meaning of the claims.
Owner:SCHLUMBERGER TECH CORP

Compound or its tautomer, metal complex compound, colored photosensitive curing composition, color filter, and production

Provided is a colored photosensitive curing composition useful for color filters in primary colors, including blue, green, and red, having a high molar absorption coefficient and allowing a reduction in film thickness and superior color purity and fastness. A colored photosensitive curing composition, comprising, as its colorant, a dipyrromethene-based metal complex compound obtained from a metal or metal compound and a dipyrromethene-based compound represented by the following Formula (I): wherein in Formula (I), R1 to R6 each independently represent a hydrogen atom or a substituent group; and R7 represents a hydrogen or halogen atom, or an alkyl, aryl or heterocyclic group.
Owner:FUJIFILM CORP

Corrosion-Resistant Downhole Transmission System

An apparatus in accordance with the invention may include a downhole tool and a data transmission path incorporated into the downhole tool. The data transmission path may include one or more contact surfaces providing electrical continuity to the data transmission path. To protect the contact surfaces from corrosion while maintaining electrical conductivity, a coating may be attached to one or more of the contact surfaces. The coating may include any of various materials that increase the corrosion-resistance of the underlying base metal, including but not limited to cobalt, nickel, tin, tin-lead, platinum, palladium, gold, silver, zinc, or combinations thereof.
Owner:INTELLISERV

Nucleation and deposition of PT films using ultraviolet irradiation

A method of depositing a platinum based metal film by CVD deposition includes bubbling a non-reactive gas through an organic platinum based metal precursor to facilitate transport of precursor vapor to the chamber. The platinum based film is deposited onto a non-silicon bearing substrate in a CVD deposition chamber in the presence of ultraviolet light at a predetermined temperature and under a predetermined pressure. The film is then annealed in an oxygen atmosphere at a sufficiently low temperature to avoid oxidation of substrate. The resulting film is free of silicide and consistently smooth and has good step coverage.
Owner:MICRON TECH INC

Cold start catalyst and its use in exhaust systems

A cold start catalyst is disclosed. The cold start catalyst comprises a zeolite catalyst and a supported platinum group metal catalyst. The zeolite catalyst comprises a base metal, a noble metal, and a zeolite. The supported platinum group metal catalyst comprises one or more platinum group metals and one or more inorganic oxide carriers. The invention also includes an exhaust system comprising the cold start catalyst. The cold start catalyst and the process result in improved NOx storage and NOx conversion, improved hydrocarbon storage and conversion, and improved CO oxidation through the cold start period.
Owner:JOHNSON MATTHEY PLC

Porous metal organic framework material based on transition metal cobalt and preparation method thereof

The invention relates to a porous metal organic framework material based on transition metal cobalt and a preparation method thereof. The metal organic framework material is a compound with supramolecular porous network structure and formed by self-assembly of metal ions and organic ligands through coordination complexation. The porous cobalt-based metal organic framework material contains one or more metal ions, and one or more organic ligands; and at least one of the metal ions is Co (II). The porous cobalt-based organic framework material has excellent selective adsorption on CH4 in a separation process of CH4 and N2; and the advantage of adsorption selectivity on CH4 is particularly evident under low pressure. The material is particularly suitable for development and recovery of oil field gas, coal bed methane and biogas.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Phosgard, a new way to improve poison resistance in three-way catalyst applications

ActiveUS7749472B2Mitigates deleterious poisoning of a catalytic memberPreventing and reducing fouling and poisoningNitrogen compoundsInternal combustion piston enginesToxicantRefractory
The present invention provides for novel poisoning-resistant catalysts used for automobile exhaust gas treatment systems. To alleviate the detrimental affects of engine oil and / or fuel additive poisoning the present invention provides for an overcoat layer comprising a porous refractory oxide and one or more base metal oxides, which is coated over one or more precious metal containing washcoat layers. The overcoat of the present invention prevents phosphorous as well as other poisoning deposits, from fouling and / or negatively interacting with the underlying precious metal containing washcoats. In an alternative embodiment, the present invention provides for the coating of the upstream end of a catalytic member by the overcoat layer, thereby creating an upstream poison capture zone.
Owner:BASF CORP

Method for fabricating an inorganic nanocomposite

An inorganic nanocomposite is prepared by obtaining a solution of a soluble hydrazine-based metal chalcogenide precursor; dispersing a nanoentity in the precursor solution; applying a solution of the precursor containing the nanoentity onto a substrate to produce a film of the precursor containing the nanoentity; and annealing the film of the precursor containing the nanoentity to produce the metal chalcogenide nanocomposite film comprising at least one metal chalcogenide and at least one molecularly-intermixed nanoentity on the substrate. The process can be used to prepare field-effect transistors and photovoltaic devices.
Owner:GLOBALFOUNDRIES INC

Exhaust articles for internal combustion engines

InactiveUS7276212B2Improved coating architectureSacrificing TWC catalyst performanceCombination devicesInternal combustion piston enginesCombustionInternal combustion engine
Provided is a base metal undercoat containing catalyst and an exhaust article containing the catalyst. The catalyst contains a base metal undercoat with an oxygen storage component, and at least one catalytic layer. Also provided are methods for preparing the catalyst and methods for monitoring the oxygen storage capacity of an exhaust article containing the catalyst.
Owner:ENGELHARD CORP

-Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same

A coated steel material excellent in corrosion resistance and a method of producing the same, wherein a coated steel material has on the surface of the steel sheet a Zn-alloy coating layer containing 1-10 wt % of Mg, 2-19 wt % of Al and 0.01-2 wt % of Si, where Mg and Al satisfy Mg (%)+Al (%)<=20%, the balance being Zn and unavoidable impurities, and has a coating layer structure of a Mg intermetallic compound or the like. As a base metal treatment, it is preferably provided with a Ni coating layer. The coated Zn-alloy coated steel sheet may have provided on the coating layer, as an intermediate layer, a chromate film layer, and, as an upper layer, an organic coating layer. The Zn-alloy coating layer may further contain one or more of 0.01-1 wt % of In, 0.01-1 wt % of Bi and 1-10 wt % of Sn. The coated steel material may be painted.
Owner:NIPPON STEEL CORP

Light emitting diode package and method for making same

InactiveUS20070007558A1Versatile and cost-efficient constructionLow costFinal product manufacturePrinted circuit aspectsSecondary componentEngineering
A light emitting diode (LED) package for high temperature operation which includes a printed wire board and a heat sink. The LED package may include a formed heat sink layer, which may be thermally coupled to an external heat sink. The printed wire board may include apertures that correspond to the heat sink such that the heat sink is integrated with the printed wire board layer. The LED package may include castellations for mounting the package on a secondary component such as a printed wire board. The LED package may further comprise an isolator disposed between a base metal layer and one or more LED die. Optionally, the LED die may be mounted directly on a base metal layer. The LED package may include a PWB assembly having a stepped cavity, in which one or more LED die are disposed. The LED package is advantageously laminated together using a pre-punched pre-preg material or a pressure sensitive adhesive.
Owner:LIGHTING SCI GROUP

Selected processing for non-equilibrium light alloys and products

A new class of light or reactive elements and monophase α′-matrix magnesium- and aluminum-based alloys with superior engineering properties, for the latter being based on a homogeneous solute distribution or a corrosion-resistant and metallic shiny surface withstanding aqueous and saline environments and resulting from the control during synthesis of atomic structure over microstructure to net shape of the final product, said α′-matrix being retained upon conversion into a cast or wrought form. The manufacture of the materials relies on the control of deposition temperature and in-vacuum consolidation during vapor deposition, on maximized heat transfer or casting pressure during all-liquid processing and on controlled friction and shock power during solid state alloying using a mechanical milling technique. The alloy synthesis is followed by extrusion, rolling, forging, drawing and superplastic forming for which the conditions of mechanical working, thermal exposure and time to transfer corresponding metastable α′-matrix phases and microstructure into product form depend on thermal stability and transformation behavior at higher temperatures of said light alloy as well as on the defects inherent to a specific alloy synthesis employed. Alloying additions to the resulting α′-monophase matrix include 0.1 to 40 wt. % metalloids or light rare earth or early transition or simple or heavy rare earth metals or a combination thereof. The eventually more complex light alloys are designed to retain the low density and to improve damage tolerance of corresponding base metals and may include an artificial aging upon thermomechanical processing with or without solid solution heat and quench and annealing treatment for a controlled volume fraction and size of solid state precipitates to reinforce alloy film, layer or bulk and resulting surface qualities. Novel processes are employed to spur production and productivity for the new materials.
Owner:HEHMANN FRANZ

High-wear resistant Ti (C, N)-base ceramet tool bit and preparation thereof

InactiveCN101302595AReliable guarantee of high nitrogen-carbon ratioReliable Guarantee of HardnessLow nitrogenWear resistant
The invention provides a high-abrasion Ti(C, N) based metal ceramic tool and a preparation thereof. The Ti(C, N) based metal ceramic tool uses Ni and Co as a binder phase, is added with at least one carbonitride of Ti(Cx, N1-x) or (TiC)x plus (TiN)1-x as a basic batch, and consists of at least one composition of WC, Mo2C, Co, Ni, ZrC, Cr3C2, VC, TaC and NbC, and the balance being Ti(Cx, N1-x) or (TiC)x plus (TiN)1-x, wherein, an X value for adding the carbonitride of the Ti(C, N) based metal ceramic tool is as follows: X is less than or equal to 0.5 and more than or equal to 0.4, or the X is more than 0.5 and less than or equal to 0.7. The Ti(C, N) based metal ceramic tool is prepared according to the content of nitrogen by nitrogen pressure sintering or vacuum sintering combined with hot isostatic pressing treatment, thereby preventing nitrogen from escaping during the process of sintering high-nitrogen alloy, so that the high-nitrogen-carbon ratio in matrix and material hardness can be reliably guaranteed, and anti-oxidative abrasion property and anti-diffusive abrasion property of the material can be obviously increased through adding slight ZrC, Cr3C2, VC and other carbides into the basic batch; meanwhile, compactability and buckling strength of a low-nitrogen alloy structure can be obviously improved through optimally distributing each composition and content. The Ti(C, N) based metal ceramic tool is widely suitable for high-speed cutting tools of medium-low carbon steel and low alloy steel.
Owner:HUNAN UNIV OF SCI & TECH

Lead frame, light emitting diode having the lead frame, and backlight unit having the light emitting diode

An LED includes a light-emitting chip, a metal member, and a housing. The light-emitting chip generates light. The light-emitting chip is arranged on the metal member. The housing is combined with the metal member to fix the metal member. The housing has an opening portion exposing at least a portion of the light-emitting chip and the metal member. The metal member includes a base metal layer, a light-reflecting layer arranged on the base metal layer, and a protection layer arranged on the light-reflecting layer and including a metal.
Owner:SEOUL SEMICONDUCTOR

Abrasive tool with metal binder phase

In the electrodeposited abrasive wheel 20 of the abrasive tool according to the present invention, plural mound parts 21, which are upheaved at the central domain of base metal 19 in almost columnar shape, are arranged mostly in the shape of lattice. An abrasive grain layer 22 is formed on a base metal 19, and plural ultra abrasive grains 14 are adhered only to each mound parts 21 by electrodeposited metal phase 25, and referred as the small abrasive-grain-layer parts 24, respectively. Ultra abrasive grains are laid out at corner R part 21a and top 21b of the mound parts 21 at the small abrasive-grain-layer parts 24. Ultra abrasive grains at each small abrasive-grain-layer parts are set as 11-500 pieces, and the rate which ultra abrasive grains occupy to the whole area of abrasive grain layer accounted by plane projection is set as 20%-80% of the range. At the time of grinding, only ultra abrasive grains contact to grinding work piece, then high abutment pressure is maintained, and sharpness and the discharge performance of ground wastes are good.
Owner:MITSUBISHI MATERIALS CORP

Method and apparatus for determination of additives in metal plating baths

InactiveUS6280602B1Easy to operateEconomic in capital cost and operating expenseCellsSamplingElectricitySemiconductor
An apparatus and method for the indirect determination of concentrations of additives in metal plating electrolyte solutions, particularly organic additives in Cu-metalization baths for semiconductor manufacturing. The apparatus features a reference electrode housed in an electrically isolated chamber and continuously immersed in the base metal plating solution (without the additive to be measured). An additive concentration determination method comprises electroplating a test electrode at a constant or known current in a mixing chamber wherein the base metal plating solution is mixed with small volumes of the sample and various calibration solutions containing the additive to be measured. Plating potentials between the electrodes are measured and plotted for each of the solution mixtures, and data are extrapolated to determine the concentration of the additive in the sample. A multi-cycle method determines the concentration of both accelerator and suppressor organic additives in Cu plating solution in a single test suite.
Owner:ANCOSYS

Solid polymer electrolyte composite membrane comprising porous ceramic support

A solid polymer electrolyte composite membrane and method of manufacturing the same. The composite membrane comprises a porous ceramic support having a top surface and a bottom surface. The porous ceramic support may be formed by laser micromachining a ceramic sheet or may be formed by electrochemically oxidizing a sheet of the base metal. A solid polymer electrolyte fills the pores of the ceramic support and preferably also covers the top and bottom surfaces of the support. Application of the solid polymer electrolyte to the porous support may take place by applying a dispersion to the support followed by a drying off of the solvent, by hot extrusion of the solid polymer electrolyte (or by hot extrusion of a precursor of the solid polymer electrolyte followed by in-situ conversion of the precursor to the solid polymer electrolyte) or by in-situ polymerization of a corresponding monomer of the solid polymer electrolyte.
Owner:PLUG POWER

Laser based metal deposition (LBMD) of antimicrobials to implant surfaces

A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces. An antimicrobial material such as silver may be deposited in combination with a metal to form an antimicrobial surface deposit.
Owner:MEDICINELODGE

Membrane-electrode assembly and fuel battery using the same

InactiveUS20100086823A1Improve stabilityFuel cells groupingCell electrodesFuel cellsExchange current density
A membrane-electrode assembly, containing an electrode catalyst containing a base metal complex, in which exchange current density i0 obtained from a Tafel plot, which is related to current density and voltage, is 5.0×10−4 Acm−2 or more, and in which a Tafel slope obtained from the Tafel plot is 450 mV / decade or less; anda membrane-electrode assembly, containing catalyst layers each containing an electrode catalyst on both sides of an electrolyte membrane, in which at least one of the catalyst layers comprises a non-noble metal-based electrode catalyst, and in which the electrolyte membrane is a hydrocarbon-based electrolyte membrane.
Owner:SUMITOMO CHEM CO LTD

Epoxy bonded laminate door beam

A door intrusion beam is of laminated construction and has a base metal stamping with end flanges, with the base metal stamping being of an inverted generally U-shaped cross section. Slidable and nested on the base metal stamping are a plurality of slidable and stackable elongated plastic elements each having a generally M-shaped configuration. The first plastic element next to the metal stamping and all stackable elongated plastic elements are secured together by layers of adhesives where surfaces contact one another. The plastic elements are of varying length.
Owner:ZOHAR TT ACQUISITION LLC

Method for synthesizing metal matrix composition using metal reaction under the coupling action of magnetic field and ultrasonic field

The invention relates to a method for preparing endogenetic particle reinforced metal matrix composites under the coupling effect of a magnetic field and supersonic waves. The method comprises: adjusting the temperature of a metal matrix fused mass to the reaction initial temperature after refining, adding a reactant which can generate a particle phase with the fused mass through the reaction in situ for implementing the synthesis reaction, standing the mixture after the reaction is over, and cooling the mixture to the pouring temperature for pouring; and the method is characterized in that: the magnetic field and the high-intensity ultrasonic field are simultaneously exerted in the reaction synthesis process to realize the synthesis of endogenetic particle reinforced metal matrix composites under the coupling effect of the magnetic field and the high-intensity ultrasonic field. The magnetic field can be an intense pulse magnetic field, a high frequency oscillation magnetic field or a low frequency alternating magnetic field. In the method, the coupling effect of the magnetic field and the ultrasonic field makes the particle sizes be thinned and dispersed evenly; the ultrasonic vibration agitation and electromagnetic stirring functions improve the composite dynamic condition, and the compounding of the particle phase and a base metal interface is better; and the co-action of magnetochemistry and sonochemistry improves the thermodynamic condition of the reaction in situ, as well as speeding up the reaction in situ and controlling the growth of the particle phase.
Owner:JIANGSU UNIV

Damascene patterning of barrier layer metal for C4 solder bumps

A system and method for forming a novel C4 solder bump for BLM (Ball Limiting Metallurgy) includes a novel damascene technique is implemented to eliminate the Cu undercut problem and improve the C4 pitch. In the process, a barrier layer metal stack is deposited above a metal pad layer. A top layer of the barrier layer metals (e.g., Cu) is patterned by CMP. Only bottom layers of the barrier metal stack are patterned by a wet etching. The wet etch time for the Cu-based metals is greatly reduced resulting in a reduced undercut. This allows the pitch of the C4 solder bumps to be reduced. An alternate method includes use of multiple vias at the solder bump terminal.
Owner:GLOBALFOUNDRIES INC

Method for reclaiming and purifying platinum and rhodium from waste material containing platinum and rhodium

InactiveCN101260469AHigh recovery rateOptimal separation conditionsProcess efficiency improvementIon exchangeSolvent
The invention relates to a method for recycling and purifying platinum and rhodium from the waste materials containing platinum and rhodium, belonging to the noble metal chemical extracting technical field. The invention adopts the ion exchange method to eliminate the base metal and combines the solvent extraction technique and the leaching resin separation technique to separate and purify the noble metals of platinum and rhodium. The method is to recycle and purify the secondary resources of noble metals. The method has simple technique, convenient operation, high separation efficiency and high direct recovery rate. The ion exchange resin, the extracting agent and the leaching resin used in the method can be regenerated and recycled by simple methods; the emission is zero, thereby protecting the environment and contributing to the environmental protection.
Owner:SHANGHAI UNIV +1

Phosgard, a new way to improve poison resistance in three-way catalyst applications

ActiveUS20080038172A1Preventing and reducing foulingPreventing and reducing and poisoningNitrogen compoundsInternal combustion piston enginesRefractorySediment
The present invention provides for novel poisoning-resistant catalysts used for automobile exhaust gas treatment systems. To alleviate the detrimental affects of engine oil and / or fuel additive poisoning the present invention provides for an overcoat layer comprising a porous refractory oxide and one or more base metal oxides, which is coated over one or more precious metal containing washcoat layers. The overcoat of the present invention prevents phosphorous as well as other poisoning deposits, from fouling and / or negatively interacting with the underlying precious metal containing washcoats. In an alternative embodiment, the present invention provides for the coating of the upstream end of a catalytic member by the overcoat layer, thereby creating an upstream poison capture zone.
Owner:BASF CORP

Solid-state lithium battery

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La1 / 3-xLi3xTaO3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products