Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1538results about How to "Improve discharge performance" patented technology

Graphite powder of lithium ionic cell cathode and preparation thereof

The invention discloses a graphite powder of the cathode of a lithium ion battery, and a preparation method thereof; the technical problem to be solved is that the transmission speed of a lithium ion and an electrolyte to the inside of the electrode needs to be increased. The graphite powder of the cathode of the lithium ion battery of the invention has the microscopic feature of massive, spherical and near-spherical shapes and has the characteristics of nano-porous. The preparation method thereof comprises the following steps of: grinding, adding coating modifiers or / and catalysts, mixing, dissolving, and carrying out preheating treatment and heat treatment. Compared with the prior art, the invention carries out modifying treatment to graphite material and realizes the characteristic of nano-porous by adding pore-forming agents, thus being beneficial to the transmission of the lithium ion, improving the liquid-absorbing performance of a pole piece after compaction, reducing the content of impurity in the graphite, improving the liquid-absorbing performance and the magnification performance of the graphite material, meeting the requirements of the lithium ion dynamic battery for the compatibility and the charging and discharging performance with large magnification of the electrolyte of the graphite material and having the advantages of lower production cost, simple technique and easy industrialization.
Owner:BTR NEW MATERIAL GRP CO LTD

Cathode active material powder for lithium secondary battery

It is to provide a cathode active material powder for a positive electrode for a lithium secondary battery, which has a large volume capacity density, high safety and excellent durability for charge and discharge cycles.
A cathode active material powder for a lithium secondary battery characterized by comprising a first composite oxide powder represented by the formula (1) LipQxMyOzFa (wherein Q is Co or Mn, M is aluminum or an alkaline earth metal element or a transition metal element other than Q, provided that when Q is Co, 0.9≦p≦1.1, 0.980≦x≦1.000, 0≦y≦0.02, 1.9≦z≦2.1, x+y=1, and 0≦a≦0.02, and when Q is Mn, 1≦p≦1.3, x=2−y, 0≦y≦0.05, z=4, and a=0), having an average particle size D50 of from 5 to 30 μm, and having a compression breaking strength of at least 40 MPa; and a second composite oxide powder represented by the formula (2) LipNixCoyMnzNqOrFa (wherein N is aluminum or an alkaline earth metal element or a transition metal element other than Ni, Co and Mn, 0.9≦p≦1.1, 0.2≦x≦0.8, 0≦y≦0.4, 0≦z≦0.5, 0≦q≦0.05, 1.9≦r≦2.1, x+y+z+q=1, and 0≦a≦0.02), having an average particle size D50 of from 2 to 30 μm, and having a compression breaking strength less than 40 MPa; in a ratio (weight ratio) of the first composite oxide powder/the second composite oxide powder being from 95/5 to 30/70.
Owner:SUMITOMO CHEM CO LTD

Graphite powder suitable for negative electrode material of lithium ion secondary batteries

A graphite powder has surface closed-end structures in which the graphite c-plane layers of the graphite layer crystal lattices have closed-ends on the surface of the graphite powder by linking the ends of one or more pairs of the c-plane layers, leaving interstices which are open on the surface of the graphite. The number of open interstices is at least 100 and at most 1500 per micrometer in a c-axis direction of the graphite. Preferably, the graphite powder has a specific surface area of 1.0 m2 / g or less. Such a graphite powder can be prepared either by graphitizing a carbon material, which has been pulverized at a high speed under well-controlled conditions before and / or after the carbonization, or by subjecting a carbon material, which has been pulverized under well-controlled conditions before and / or after the carbonization, to graphitization and then to oxidative heat treatment at a temperature of 600-800° C. and finally to heat treatment at a temperature of 800° C. or higher in an inert gas. The graphite powder can be used to produce negative electrodes of lithium ion secondary batteries having a high discharge capacity of at least 320 mAh / g and a high charge / discharge coulombic efficiency of at least 90%.
Owner:NIPPON DENKO CO LTD +1

Energy storage device with both capacitor and lithium ion battery characteristics and manufacturing method thereof

An energy storage device having both characteristics of super capacitor and lithium ion battery and manufacturing method thereof are provided. The invention adopts the mixture of anode material of lithium ion battery and electrode material of super capacitor or composite material as anode active substance, and uses the mixture of cathode material of the lithium ion battery and electrode material of the super capacitor or composite material as cathode active substance. In the electrode active substance, the electrode material of the lithium ion battery has a content of 20% to 95%; the electrode material of the super capacitor has a content of 5% to 80%. The electrode active substance is mixed with the bonder, conducting agent, additive and solvent etc to prepare slurry, then experience steps of coating, drying, roll forming, parting, so that the anode sheet and cathode sheet of the super capacitance battery are produced. By adopting multi-core winding parallel connection and the assembling technology of the winded wore parallel to the narrow arrangement, the anode sheet, the cathode sheet and the membrane are loaded in the battery shell and then welded, dried, dehydrated, and injected with electrolyte, then activated by electricity to obtain super capacitance battery with high energy density and high power density.
Owner:CENT SOUTH UNIV

Novel ceramic coating polyolefin composite film and preparation method thereof

The invention relates to a novel ceramic coating polyolefin composite film which comprises a polyolefin substrate with micro pores, wherein one side or both sides of the polyolefin substrate is/are compounded with ceramic coating(s); the ceramic coating comprises porous ceramic particles, an inorganic filler and an adhesive. The invention also relates to a method for preparing the novel ceramic coating polyolefin composite film. The method comprises the following steps: a, dissolving the adhesive in a solvent, thereby preparing an adhesive solution; b, adding the porous ceramic particles and the functional inorganic filler into the adhesion solution prepared in the step a, and performing dispersing treatment, thereby preparing coating slurry; and c, coating one or two surfaces of the polyolefin substrate with the coating slurry prepared in the step b, and drying and curing to prepare the product. The novel functional composite film has high liquid absorption and retention performance, has the functions of reducing harmful gases inside a battery, improving the performance of the battery and prolonging the service life of the battery, and has the safety characteristics of low closed pore temperature, high melting temperature and low hot-shrinkage rate.
Owner:河南惠强新能源材料科技股份有限公司

Charge-discharge equalizing circuit of multi-monomer tandem dynamic lithium battery

The invention relates to a charge-discharge equalizing circuit of a multi-monomer tandem dynamic lithium battery, comprising a master control module and a group of equalizing modules, wherein the group of equalizing modules are communicated with the master control module and correspondingly connected with a group of monomer batteries which are sequentially connected in series; each equalizing module comprises a flyback transformer, two switches and one or more than two parallel capacitor banks; one winding of the flyback transformer of each equalizing module is connected with the positive and negative poles of the corresponding monomer battery; the capacitor banks of each equalizing module are connected with the winding in parallel; the other winding is connected with the positive and negative poles of the monomer battery which is adjacent to and sequentially connected to the above monomer battery; and each winding return circuit is connected with one switch in series. The equalizing circuit realizes energy balance among all the monomer batteries, has the advantages that the equalization is lossless, the equalizing current is large, the equalizing efficiency is high, the expandability is good and the implementation is easy, and the purposes of quick large-current charging, enhancement of battery safety performance, improvement of discharging capacity and service life of the batteries and the like can be realized.
Owner:CHINA AVIATION LITHIUM BATTERY LUOYANG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products