Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

652 results about "Solid state reaction method" patented technology

Method for synthesizing LiFePO4/C material based on chemical gas phase sediment auxiliary solid phase method

The invention relates to a method for synthesizing LiFePO4/C material by chemical vapor deposition supporting the solid phase reaction method, namely, the method for preparing carbon coating lithium iron battery anode material, belonging to the Li-ion battery material preparation art technical field. The characteristics of the method for synthesizing LiFePO4/C materials by solid phase and auxiliary chemical vapor deposition are that auxiliary chemical vapor deposition supporting the solid phase reaction method is adopted to synthesize the carbon coating phosphate lithium iron, namely, the LiFePO4/C material. In the method for synthesizing LiFePO4/C material by chemical vapor deposition supporting the solid phase reaction method, a precursor comprising raw materials of lithium, iron and phosphor is adopted to prepare the carbon coating phosphate lithium iron after being blended, grinded by a globe mill, treated by preheating and calcined as well as vapor deposition. The method for synthesizing LiFePO4/C material by chemical vapor deposition supporting the solid phase reaction method has the advantages that the chemical composition, carbon contents and grain size of LiFePO4 can be controlled effectively; the Li-ion battery anode material prepared has sound conductive performance and can improve the charge-discharge rate and cycling performance of the material.
Owner:SHANGHAI CHIYUAN NEW MATERIAL TECH

Hydrothermal preparation method for NiS2 with controllable shape

The invention discloses a hydrothermal preparation method for NiS2 with a controllable shape, and the method mainly comprises the following steps of: mixing nickel salt, a sulphur source and a complexing agent in a certain molar ratio, transferring the mixture into a high-pressure reactor, adding distilled water, and stirring to adequately dissolve soluble solids; adjusting the pH value of the reaction system, sealing the reactor, and reacting at a certain temperature; and washing the obtained product by use of distilled water and ethanol respectively, centrifugally separating, and drying. The hydrothermal preparation method for NiS2 with a controllable shape disclosed by the invention has the advantages of being simple in operation by using a hydrothermal method, moderate in reaction condition, narrow in particle size distribution, high in product purity, easy in industrial production, and the like. The particle shape and size of NiS2 can be controlled by adjusting the synthesis conditions such as hydrothermal reaction temperature, reaction time, complexing agent type and pH value, and the prepared NiS2 can be approximately-cube-shaped, spherical, sheet-shaped and the like. Compared with a solid-state reaction method, an ultrasonic spray pyrolysis method, a gamma-ray irradiation method and an organic solvent hot method, the NiS2 prepared by the hydrothermal method has the advantages of being low in reaction temperature and equipment demand, less in toxicity on a human body, high in safety factor, low in production cost, capable of meeting the requirements of energy conservation and emission reduction, and the like.
Owner:SHENYANG LIGONG UNIV

Preparation method for LiTiO/C compound electrode material

The invention discloses a preparation method for Li4Ti5O12/C compound electrode material, using a solidifying phase reacting method of low temperature presintering firstly and further high temperature roasting. The method comprises following steps: (1) preparing compound containing Ti and inorganic lithium salts in a certain ratio, mixing and performing ball grinding in an organic solvent medium; (2) in the air atmosphere, increasing temperature to 300-700 DEG C and after keeping the temperature for 2-8h, cooling the mixture to the constant temperature with the furnace to obtain the intermediate product; (3) mixing and performing ball grinding on the intermediate product and carbon source; under the protection of inert gas atmosphere, increasing temperature to 780-950 DEG C and keeping the temperature for 2-20h, then cooling the mixture with the furnace to obtain the Li4Ti5O12/C compound electrode material. The invention has low preparation cost and a characteristic easy to achieve scale production; the synthesized sample has a regular appearance and a stable structure, having high charging-discharging multiplying power and a great circulation performance, which can be used as the electrode material of super capacitor, lithium ion battery or super capacitor battery.
Owner:CENT SOUTH UNIV +1

Method for preparing nitrogen-doped porous carbon material used as sodium ion battery cathode

ActiveCN107331867AImprove cycle stabilityOvercome the disadvantage of low specific capacityCell electrodesSecondary cellsPorous carbonSynthesis methods
The invention provides a method for preparing a nitrogen-doped porous carbon material used as a sodium ion battery cathode, and belongs to a method for preparing nitrogen-doped porous carbon. The nitrogen-doped carbon material is controlled and synthesized by regulating and controlling each parameter in the reacting process by means of a simple and feasible high-temperature solid phase reaction method, and is applied to a sodium ion battery cathode material. The method comprises the following steps: dissolving a selected nitrogen source in a solvent to form a transparent solution A; adding a proper amount of carbon source into the solution A, and constantly adding into solvent to sufficiently disperse the nitrogen source under a stirring state; drying the materials in a lyophilizer for 2-12 hours; putting a proper amount of the materials into a crucible, heating to 300-1100 DEG C and insulating for 1-6 hours in a vacuum tube furnace under an argon atmosphere at a speed of 2-8 DEG C/minute; and separating and purifying the generated product to obtain a product. The preparation method has the advantages of low-price and easily available raw materials, simple synthesis method and high controllability of operation steps, and is easy for expanded production. The nitrogen-doped porous carbon material can be used as a sodium ion battery cathode material, and shows excellent electrochemical performance.
Owner:CHINA UNIV OF MINING & TECH

Compound potassium lead borophosphate nonlinear optical crystal as well as preparation method and application thereof

The invention relates to a compound potassium lead borophosphate nonlinear optical crystal as well as a preparation method and application thereof. The compound has the chemical formula of KPbBP2O8. The preparation method comprises the following steps of: after uniformly mixing a raw material containing K, Pb, B and P by adopting a solid-phase reaction method, heating for carrying out solid-phase reaction to obtain a compound of the potassium lead borophosphate; and growing a crystal on the compound by adopting a melt method to obtain the potassium lead borophosphate nonlinear optical crystal. The compound is the centimeter-grade large size nonlinear optical crystal of a tetragonal crystal system; a space group is I-42d; cell parameters comprise a=7.1764(7), b=7.1764(7), c=13.9483(13), Z=4 and V=718.35; the powder frequency doubling effect of the compound is equivalent to that of KDP (Potassium Dihydrogen Phosphate); the Mohs hardness is 4 to 5; and the potassium lead borophosphate nonlinear optical crystal has the advantages of easy cutting, polishing processing and storage, no deliquescence, high preparation speed, simple operation, low cost, good mechanical performance, difficult cracking, stable physicochemical property, and the like and is suitable for manufacturing an nonlinear optical device.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Li4Ti5O12/ grapheme composite electrode material and preparation method thereof

The invention relates to a Li4Ti5O12/ grapheme composite electrode material, which is prepared by combining the following components: carbon-coated titanium dioxide, grapheme and a lithium source, wherein in a mixture of the carbon-coated titanium dioxide and the lithium source, the molar ratio of lithium to titanium is 0.8-0.88:1; and the grapheme accounts for 1.0 percent-15 percent of the total weight of lithium titanate/grapheme composite electrode materials. The invention also provides a preparation method of the composite electrode material. The method comprises the following steps of: on the basis of coating carbon on raw material nano TiO2, compositing the lithium source and the grapheme with the TiO2 through ball-milling; and preparing the composite electrode material under inert atmosphere through an in-situ solid-phase reaction method. According to the method, the agglomeration of Li4Ti5O12 at high temperature is effectively inhibited, the combination between the coated carbon layer and the grapheme is closer, and the stable and uniform composite material is formed. Tests show that the composite material has favorable electrochemical performance when being used as the electrode material of a lithium ion battery and a supercapacitor, is an ideal electrode material for the lithium ion battery and the supercapacitor, has simple combination process, and is easy to produce in large scale.
Owner:HEFEI UNIV OF TECH

Lithium iron phosphate anode material for lithium ion battery and modification method

The invention provides a lithium iron phosphate anode material used for lithium ion batteries; the lithium iron phosphate which is prepared by a water heating method is taken as a precursor which is then uniformly mixed with a conductive matter precursor and metal ion salt, and finally baked in inert gas to obtain the lithium iron phosphate anode material which is coated by the conductive matter and doped by the metal ions. Compared with a pure solid phase reaction method, the method of the invention has small energy dissipation, the chemical uniformity of the synchronized outcome is good, the dimension and the appearance of the outcome are uniform, and the electromechanical performance and the processing performance have good stability and repeatability. Compared with the a pure water heating method, as the coating of the conductive matter, the doping and modifying performance of the metal ions are added during the anaphase, the electric conductivity of the material is greatly improved, and the high magnification electromechanical performance of the material is excellent; wherein, under the 10C discharging magnification, the discharging content of the lithium iron phosphate anode material with the copper ion doped is kept at 107mAh / g. After circulation for 50 times, the discharging content of the material is kept unchangeable basically, which can certify that the material has good circulation performance.
Owner:HEFEI UNIV OF TECH

Compound barium borofluoride, barium borofluoride non-linear optical crystal, and preparation method and use of the barium borofluoride non-linear optical crystal

The invention discloses a compound barium borofluoride, a barium borofluoride non-linear optical crystal, and a preparation method and a use of the barium borofluoride non-linear optical crystal. The compound barium borofluoride and the barium borofluoride non-linear optical crystal have the same chemical formula of Ba3B6O11F2. The barium borofluoride non-linear optical crystal belongs to a monoclinic system, has a space group P2(1), has cell parameters shown in the patent specification, wherein beta is equal to 101.351(4)deg., and has the molecular weight of 690.88. The powder frequency-doubling effect of the barium borofluoride non-linear optical crystal is 3 times that of KDP (KH2PO4). The compound barium borofluoride is synthesized by a solid-phase reaction method. The barium borofluoride non-linear optical crystal grows by a high-temperature melting method. The barium borofluoride non-linear optical crystal has large mechanical hardness, can be cut, polished and stored easily, and can be widely used in preparation of nonlinear optical devices such as a frequency multiplication generator, an upper frequency converter, a lower frequency converter and an optical parameter resonator.
Owner:XINJIANG TECHN INST OF PHYSICS & CHEM CHINESE ACAD OF SCI

Low temperature co-fired microwave dielectric ceramic material and preparation method thereof

The invention discloses a low temperature co-fired microwave dielectric ceramic material and a preparation method thereof. The ceramic material comprises a main powder material Li2ZnTi3O8, an auxiliary component TiO2 and low-melting-point LZB (Li2O-ZnO-BiO2) or LBS (Li2O-B2O3-SiO2) glass powder. The preparation method comprises the following steps of: adding TiO2 and the glass powder into the Li2ZnTi3O8 powder in a powder form; and then evenly mixing in a ball mill, drying, pelleting and sintering so as to obtain the ceramic material. In the invention, based on the Li2ZnTi3O8 powder as a reference, batching is carried out according to the proportions that the mass of the glass powder is 0.5-3wt% of that of Li2ZnTi3O8 and the mass of the TiO2 powder is 0-5wt% of that of Li2ZnTi3O8; and thematerial of the invention can be obtained by a traditional solid phase reaction method. The low temperature co-fired microwave dielectric ceramic material prepared by the method of the invention has low sintering temperature (about 875 DEG C) and good microwave dielectric property, and can be well co-fired with a Ag electrode; pure silver with high electricity conductivity and low cost is used asan electrode material, thus the manufacturing cost of a device can be greatly reduced; and the low temperature co-fired microwave dielectric ceramic material can be used for a low temperature co-fired ceramic (LTCC) system and manufacturing of microwave devices such as multilayer dielectric resonators, microwave antennas, filters and the like.
Owner:GUILIN UNIV OF ELECTRONIC TECH

Method for preparing magnesia-alumina spinel powder through low-temperature solid reaction process

The invention discloses a method for preparing magnesia-alumina spinel powder through the low-temperature solid reaction process. Raw material containing aluminum and magnesium is weighted according to the stoichiometric proportion of magnesia-alumina spinels, the weighted raw material is subject to dry-process pretreatment, wet-process pretreatment, saline hydrolysis process pretreatment or saline precipitation process pretreatment to obtain mixture powder as a precursor, the precursor is subject to the heat treatment or roasting at the temperature of 900 to 1,200 DEG C to obtain the magnesia-alumina spinel powder with better dispersibility and pure phase, and part of particles takes the shape of an octahedra. According to the invention, fluorochemicals are taken as mineralizing agents, the effective control on the solid-phase reaction of alumina (or aluminum hydroxide) and marmag (or magnesium hydroxide) at a high temperature is achieved, and the characteristics that the reaction temperature is low, the pure-phase or almost pure-phase magnesia-alumina spinel powder can be manufactured, the chemical purity of the powder can keep the same level with that of the powder before the solid-phase reaction, the granularity of the powder is micron-grade or submicron-grade, and the raw material particles of the powder take the shape of a regular octahedra sometimes are achieved.
Owner:DALIAN JIAOTONG UNIVERSITY +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products