Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2279 results about "Lithium titanate" patented technology

Lithium titanate is a compound with the chemical formula Li₂TiO₃. It is a white powder with a melting point of 1,325 °C (2,417 °F). Lithium titanate is the anode component of the fast recharging lithium-titanate battery. It is also used as an additive in porcelain enamels and ceramic insulating bodies based on titanates. It is frequently utilized as a flux due to its good stability. In recent years, along with other lithium ceramics, metatitanate pebbles have been the subject of research efforts towards tritium breeding materials in nuclear fusion applications.

Lithium titanate composite electrode material with surface coating layer

The invention relates to a battery electrode material, in particular to a lithium titanate composite electrode material with surface coating layer; in the lithium titanate composite electrode material with surface coating layer, the electrode material is composed of lithium titanate particles and a coating layer coated with the surface of the lithium titanate particles; the particle size of the lithium titanate particles is 100nm-95mum, the average thickness of the surface coating layer is 0.2nm-5m, and the particle diameter of the composite electrode material is 0.1-100mum; the material of the surface coating layer is one or mixture of more than one kind of insulation oxide, insulation composite oxide, aluminium phosphate, magnesium phosphate, lithium fluoride, lithium phosphate or LiMPO4, wherein M is magnesium, ferrum, cobalt, nickel, chromium, titanium or vanadium; in the invention, by carrying out surface coating treatment to the surfaces of the existing lithium titanate particles, a layer of protective film is formed on the surface, so as to change the physical and chemical characteristics of the surface of the lithium titanate active material, the surface can not be reacted with electrolyte even if under overpotential condition, so as to avoid ballooning and ensure the capacity and the circularity of the battery not to be reduced.
Owner:SUZHOU PHYLION BATTERY

Method for preparing carbon-coating type lithium titanate for lithium ion battery

The invention discloses a preparation method of carbon-coated lithium titanate used for a lithium ion battery; the method comprises the following steps: (1) lithium salt and titanium dioxide are weighted according to proportion, a dispersing agent is added, a ball milling method is used for mixing fully and then the obtained mixture is dried in vacuum, thus obtaining a precursor; (2) the obtained precursor is roasted for 8 to 20 hours at the temperature of 750 to 1000 DEG C so as to prepare lithium titanate; (3) carbon source materials are coated on the surface of the prepared lithium titanate by a dipping and steaming method; and (4) the lithium titanate coated with the carbon source materials is placed in a tubular furnace, and is roasted for 0.5 to 5 hours at the temperature of 750 to 1000 DEG C under the protection of inert gas so as to obtain the carbon-coated lithium titanate. The preparation method of the invention forms chemically coated carbon on the surface of the lithium titanate by the pyrolytic reaction of the carbon-coated materials, and the surface contact of the coated carbon and the lithium titanate material is more firm and tight, thus improving the electron conductivity of the materials greatly and enhancing the charge and discharge performance of magnification of the materials.
Owner:TIANJIN B&M SCI & TECH

Nanometer lithium titanate/graphene composite negative electrode material and preparation process thereof

The invention relates to the field of negative electrode materials of lithium ion batteries, and specifically to a nanometer lithium titanate/graphene composite negative electrode material and a preparation process thereof. According to the invention, micron-sized lithium titanate prepared by the solid phase method is subjected to ultrafine ball milling to obtain nanometer powder, and the nanometer lithium titanate powder and graphene are uniformly compounded and subjected to heat treatment so as to obtain a high performance lithium ion battery negative electrode material; the invention is characterized in that uniform distribution of graphene in the nanometer lithium titanate powder is realized through in situ compounding; the weight of graphene in the composite negative electrode material accounts for 0.5 to 20%, and the weight of lithium titanate accounts for 80 to 99.5%. The lithium ion battery negative electrode material has good electrochemical performance, 1C capacity greater than 165 mAh/g, 30C capacity greater than 120 mAh/g and 50C capacity greater than 90 mAh/g. Nanometer lithium titanate in the lithium ion battery negative electrode material prepared in the invention has high phase purity; the preparation process of the material is simple and is easy for industrial production.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Lithium titanate-carbon composite nano-material, preparation method thereof and application thereof

The invention discloses a lithium titanate-carbon composite nano-material, a preparation method thereof and application thereof. The method comprises the following steps: 1) statically spinning lithium titanate sol, or lithium titanate sol doped with a conductive substance or lithium titanate sol doped with metal ions to obtain a thin film, wherein the conductive substance is conductive metal or conductive carbon; and 2) heat treating the thin film in inert atmosphere to obtain the lithium titanate-carbon composite nano-material. The lithium titanate-carbon composite nano-material provided by the invention has a standard one-dimensional morphological structure, high crystallinity, high conductivity and high safety performance, and has high lithium ion diffusion speed and high electronic conductivity when applied as the cathode material of the lithium ion battery. Moreover, the lithium titanate-carbon composite nano-material has high charge/discharge capacity, excellent high-current charge/discharge performance and stable cycling performance. The 10c charge/discharge capacity is 125mAh/g, the 40C charge/discharge capacity reaches 95mAh/g, and the retention rate of the high-current 40C charge/discharge capacity within 3000 times reaches 85 percent.
Owner:PEKING UNIV

Emergency traction power supply system of electric motor unit

The invention discloses an emergency traction power supply system of an electric motor unit, which comprises a traction transformer used for reducing high voltage of a contact network, two rectifiers used for rectifying alternating current of secondary side windings of the traction transformer into voltage of middle direct current links, two inverters used for taking electricity from the middle direct current links and performing inversion into three-phase alternating current, a two-way auxiliary current transformer used for taking electricity from the middle direct current links and performing inversion into three-phase alternating current or taking electricity from a two-way charger and then performing boosting and rectification into the voltage of the middle direct current links, an auxiliary load used for obtaining the three-phase alternating current from the two-way auxiliary current transformer or the two-way charger by an auxiliary load power supply busbar, and the two-way charger used for obtaining the three-phase alternating current from a three-phase alternating current output side of the two-way auxiliary current transformer and performing voltage reduction and rectification on the three-phase alternating current into direct current to supply power to a lithium titanate battery and a direct current load which are connected with the two-way charger, or used for taking electricity from the lithium titanate battery and performing boosting and inversion into the three-phase alternating current to supply power to the auxiliary current transformer.
Owner:CHINA RAILWAYS CORPORATION +3

Synthetic method of nitrogen-enriched carbon coated lithium titanate composite material prepared by introduction of ionic liquid as carbon source

The invention discloses a synthetic method of a nitrogen-enriched carbon coated lithium titanate composite material prepared by the introduction of an ionic liquid as a carbon source. The synthetic method comprises the following steps of: 1) weighing lithium salt, titanium dioxide and the carbon source in proportion, adding alcohol, carrying out ball milling dispersion, and carrying out vacuum drying to prepare a precursor; 2) sintering the prepared precursor at the temperature of 750-950 DEG C under the protection of an inert atmosphere so as to preliminarily obtain lithium titanate with a carbon material coated on the surface; and 3) adding the ionic liquid and deionized water in proportion into the preliminarily obtained carbon-coated lithium titanate, carrying out ball milling, stirring and sintering. The lithium titanate composite material has a spherical morphology of nano-primary particle composed micrometer secondary particles, and the surface of the lithium titanate composite material is uniformly coated with a layer of nitrogen-enriched carbon material. Its electronic conductivity is not only effectively raised, but surface stability of the material is also enhanced. The obtained material has excellent rate capability and cycle performance. In addition, gas expansion problem of lithium titanate cells is effectively improved. The nitrogen-enriched carbon coated lithium titanate composite material has a wide application prospect in the field of lithium ion battery.
Owner:HEFEI GUOXUAN HIGH TECH POWER ENERGY

Preparation method for three-dimensional porous graphene doping and coating lithium titanate composite anode material

The invention discloses a preparation method for a three-dimensional porous graphene doping and coating lithium titanate composite anode material. The problem that a high ratio property of lithium titanate is poor can be solved by a doping vario-property of a carbon nano material to the lithium titanate, and the spinel structure of the lithium titanate can not be affected. A nano carbon layer made of the carbon nano material is doped in a carbon nano material doping lithium titanate composite material to have an effect of an electrical transmission cushion layer, so that a cyclic property of the carbon nano material doping lithium titanate composite material is improved, besides, an introduction of the carbon nano material can effectively restrain a gathering of lithium titanate particles in a heat treatment process, and simultaneously diffusion coefficients of lithium-ions in the carbon nano material doping lithium titanate composite material are increased. According to the preparation method for the three-dimensional porous graphene doping and coating lithium titanate composite anode material, the prepared three-dimensional porous grapheme has a high specific surface area, and thereby the high ratio property of the lithium titanate is further improved.
Owner:NINGBO UNIVERSITY OF TECHNOLOGY

Preparation method of graphene/lithium titanate composite anode material

The invention discloses a preparation method of a graphene/lithium titanate composite anode material, which comprises the following steps: compounding compounds serving as a lithium source and a titanium source and graphene oxide through a liquid-phase method and reducing graphene oxide of the compound in inert gas mixed with reducing gas into graphene so as to obtain the graphene/lithium titanate composite anode material. The method has the characteristic of realizing uniform distribution of graphene in lithium titanate through an in-situ compounding technique. Under the same conditions, the discharge time of a hybrid capacitor which respectively takes the graphene/lithium titanate composite anode material and activated carbon as the anode and cathode is obviously greater than that of an electric double-layer capacitor which takes activated carbon as an electrode and that of a hybrid capacitor which respectively takes lithium titanate and activated carbon as the anode and cathode. The lithium titanate phase purity of a hybrid supercapacitor and lithium ion battery composite anode materials prepared by the method disclosed by the invention is higher. Furthermore, the preparation method further has the characteristic of easily realizing the large-scale industrial production.
Owner:ZHANGJIAGANG IND TECH RES INST CO LTD DALIAN INST OF CHEM PHYSICS CHINESE ACADEMY OF SCI +1

Preparation method of carbon-coated sodium-micron-scale lithium titanate composite anode material

The invention relates to a preparation method of a carbon-coated sodium-micron-scale lithium titanate composite anode material. The method comprises steps as follows: lithium salt is dissolved in an aqueous solution of absolute ethyl alcohol, and the solution is marked a solution a; an organic titanium compound and a carbon source are dissolved in absolute ethyl alcohol, and the solution is marked a solution b; a chelating agent M is dissolved in absolute ethyl alcohol, ultrasonic dispersion is performed, and the solution is marked a solution c; the solution c is slowly dropwise added to the solution b while stirring, and white sol is obtained; then the solution a is slowly dropwise added to the white sol; after the sol is aged, heating, stirring, drying, grinding, sieving and calcination are performed, and the carbon-coated lithium titanate composite anode material is obtained. Lithium titanate has narrower particle size distribution and more uniform particle distribution, and sodium-micron-scale particles are uniformly inlaid to form particles with high tap density; the particle structure is loose and porous, the specific surface area of a formed electrode is larger, getting off of lithium ions in the lithium titanate material is facilitated, and the stability of the crystal structure of the lithium ions in the charge and discharge process is guaranteed.
Owner:SHANDONG YUHUANG NEW ENERGY TECH

Preparation method of lithium titanate negative electrode material with micro-nanostructure

The invention provides a preparation method of a lithium titanate negative electrode material with a micro-nanostructure. The method is characterized by comprising the steps of: a. preparing a titanium dioxide precursor; b. under a stirring state, adding the titanium dioxide precursor into water, or a mixed solution of water and ethanol, further adding lithium hydroxide under a stirring state, then transferring the solution into a hydrothermal reaction kettle to undergo a hydrothermal reaction, leaving the solution to natural cooling to room temperature, then carrying out filtering, washing, drying and calcination, thus obtaining the lithium titanate negative electrode material end product. The method adopts spherical titanium dioxide as an initial raw material, and takes water or ethanol as a reaction solvent to prepare plush-like hollow microspheres with an average diameter of 1.5-3 micrometers through a hydrothermal reaction and a calcination treatment. The microspheres are composed of nanosheets. The material also shows certain mesoporous characteristic, the inner micropores of the material have an average diameter of 5-15nm. The lithium titanate negative electrode material with a micro-nanostructure involved in the invention has the characteristic of excellent high-rate discharge, and is suitable for use by power batteries.
Owner:SHANGHAI NAT ENG RES CENT FORNANOTECH

Lithium titanate for lithium ion battery negative electrode material and preparation method thereof

The invention discloses lithium titanate for a lithium ion battery negative electrode material and a preparation method thereof. The preparation method is characterized by comprising the following steps of: mixing titanium dioxide with a lithium source in a molar ratio of 5:4.2; based on the total mass of the titanium dioxide and the lithium source, adding 5 to 15 percent of carbonaceous organic material and 2 to 5 percent of metal compound; adding alcohol or acetone into the mixture to stir into paste and ball-milling uniformly; drying the mixture and raising the temperature in air atmosphere to 600 to 750 DEG C at a rate of 3 to 5 DEG C per minute and preserving the heat for 6 to 12 hours; then raising the temperature to 800 to 900 DEG C and preserving the heat for 16 to 24 hours; and cooling the mixture to obtain doped lithium titanate Li4-xMxTi5O12, wherein M is metal Fe, Mg, Mn, Ag, Al, V, Sn or Cu; and x is less than or equal to 0.3 and more than or equal to 0.05. The lithium titanate can be used as the negative electrode material of the lithium ion battery, has the advantages of good rapid charge/discharge capacity, high safety performance, no pollution and excellent large-power charge/discharge performance, is suitable for industrialized production, and can be applied in the fields of electric automobiles, energy storage equipment and electric tools.
Owner:HEFEI UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products