Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1988 results about "Carbon coated" patented technology

Carbon coating. Carbon coating is applied for SEM and TEM insulating samples. It is suitable for high resolution observation. The use of Carbon Films in Electron Microscopy with their LOW background signal, and relatively good electrical conductivity is well known.

Method for producing carbon coated nano stage lithium iron phosphate by precipitation

The invention discloses a precipitation method for preparing nanometer level iron phosphate lithium coated with carbon. The method comprises the following steps: firstly, weighing iron salt, deionized water and a compound of metallic elements; after the stirring and the mixing are performed, adding a phosphorous compound and citric acid diluted with water to the mixture; after the stirring is performed again, adding a precipitation agent to the mixture and controlling to the neutrality; stirring to react in a container, and after the static placement, respectively adding the deionized water, a carbon source and lithium salt to mix uniformly after the precipitate is filtered and washed; stirring again to react, and drying the water at 30 to 160 DEG C and warming up at the heating rate under the protection of non-oxidized gas after a product is crashed; baking at a constant temperature of 450 to 850 DEG C, cooling down to a room temperature at a cooling rate or with a stove, and finally obtaining the nanometer level ferric phosphate lithium coated with the carbon after crashing is performed. The precipitation method has the advantage that the raw material cost and the processing cost are low because bivalent iron is taken as the raw material. The iron phosphate lithium prepared by using the process has the characteristics of good physical processing performance and good electrochemistry performance, and is suitable for industrialized production.
Owner:南京海泰纳米材料有限公司

Light-transmitting and/or coated article with removable protective coating and methods of making the same

A method and coating are provided for temporarily protecting a substrate or article during shipping, handling or storage by applying a removable protective coating over at least a portion of the substrate. The substrate may be flat or curved and may have zero, one or more functional coatings. A plurality of substrates with the protective coating of the invention may be arranged in a shipping container so that the protective coating reduces the possibility of damage to the substrate or optional functional coating. In one embodiment, the protective coating is the evaporation or reaction product of an aqueous coating composition containing a polyvinyl alcohol polymer which may be subsequently removed by aqueous washing, thermal decomposition or combustion. In another embodiment, the protective coating is formed by sputtering a substantially carbon coating onto the substrate. The carbon coating is subsequently removed by combustion. The protective coating may have identification materials, such as colorants or fragrance materials, such that different types of substrates and/or functional coatings can be distinguished from each other. Additionally, the temporary protective coating can improve the heating of a functionally coated glass substrate.
Owner:VITRO FLAT GLASS LLC

Preparation method of silicon and carbon-coated graphene composite cathode material

ActiveCN103050666ARealize in situ restorationThe preparation process is simple, convenient and practicalMaterial nanotechnologyCell electrodesCarbon coatedStructural stability
The invention discloses a preparation method of a silicon and carbon-coated graphene composite cathode material. The technical problem to be solved is to enhance the electronic conductivity of the silicon-based cathode material, buffer the volume effect produced in the process of deintercalation of the lithium in the silicon-based cathode material and enhance the structure stability in the circulation process of the material at the same time. The material is prepared by using a spray drying-thermally decomposing treatment process in the invention. The preparation method comprises the following steps of: evenly dispersing nano silicon and graphite micro powder in a dispersion solution of oxidized graphene, carrying out thermal treatment under an inert protection atmosphere after spray drying, subsequently cooling along a furnace to obtain the silicon and carbon-coated graphene composite cathode material. The extra binder does not need to add in the process of manufacturing balls in the invention and the outer oxidized graphene is thermally reduced in situ to graphene in the thermal treatment process of the composite precursor, so that the process is simple and easy to operate; and the practical degree is high. The prepared composite material has the advantages of great reversible capacity, designable capacity, good cycling performance and high-current discharging performance, high tap density and the like.
Owner:CENT SOUTH UNIV

Carbon-coated ternary positive electrode material and preparation method thereof

The invention discloses a carbon-coated ternary positive electrode material and a preparation method thereof. The preparation method comprises the following steps: S1, preparing a ternary positive electrode material precursor by taking nickel salt, cobalt salt and manganese salt as raw materials; S2, preparing a conductive carbon dispersion system, wherein conductive carbon is dispersed in water containing an organic carbon source; S3, adding the ternary positive electrode material precursor and a lithium compound into the conductive carbon dispersion system, and mixing uniformly to obtain a mixture; S4, drying the mixture under a vacuum condition; S5, carrying out high temperature treatment on the dried mixture under a closed condition or in an inert gas protection atmosphere so as to obtain the carbon-coated ternary positive electrode material. The carbon-coated ternary positive electrode material is uniform in coating, simple to operate, low in cost and high in efficiency; the conductive carbon and the ternary positive electrode material are simultaneously coated with network-shaped amorphous carbon which serves as a conductive medium or a channel of the conductive carbon and the ternary positive electrode material, thereby greatly improving the rate performance of the ternary positive electrode material.
Owner:SHENZHEN BETTERPOWER BATTERY

Method for preparing carbon-coating type lithium titanate for lithium ion battery

The invention discloses a preparation method of carbon-coated lithium titanate used for a lithium ion battery; the method comprises the following steps: (1) lithium salt and titanium dioxide are weighted according to proportion, a dispersing agent is added, a ball milling method is used for mixing fully and then the obtained mixture is dried in vacuum, thus obtaining a precursor; (2) the obtained precursor is roasted for 8 to 20 hours at the temperature of 750 to 1000 DEG C so as to prepare lithium titanate; (3) carbon source materials are coated on the surface of the prepared lithium titanate by a dipping and steaming method; and (4) the lithium titanate coated with the carbon source materials is placed in a tubular furnace, and is roasted for 0.5 to 5 hours at the temperature of 750 to 1000 DEG C under the protection of inert gas so as to obtain the carbon-coated lithium titanate. The preparation method of the invention forms chemically coated carbon on the surface of the lithium titanate by the pyrolytic reaction of the carbon-coated materials, and the surface contact of the coated carbon and the lithium titanate material is more firm and tight, thus improving the electron conductivity of the materials greatly and enhancing the charge and discharge performance of magnification of the materials.
Owner:TIANJIN B&M SCI & TECH

Preparation method for carbon-coated silicon negative electrode material for lithium ion battery

The invention provides a preparation method for a carbon-coated silicon negative electrode material for a lithium ion battery. The negative electrode material for the lithium ion battery with excellent performance is obtained from silicon powder by two times of carbon coating; the preparation method comprises the following steps of carrying out liquid phase dispersion on the silicon powder, then carrying out dispersion on the silicon powder, the first carbon coating layer and a dispersing agent; removing the solvent, and carrying out high-temperature carbonization treatment on the obtained solid material to obtain primary carbon-coated silicon negative electrode material; preparing a dispersion solution of a second carbon-coated material, dispersing the primary carbon-coated silicon material to the dispersion solution of the second carbon-coated material, and then removing the solvent and carrying out secondary roasting to obtain the secondary carbon-coated silicon negative electrode material. According to the preparation method, the raw materials are low in cost and easily available; the ratio of silicon to carbon can be optionally regulated and controlled; and the preparation method is simple in equipment, easy to implement the technological process, and suitable for scale production.
Owner:天津普兰能源科技有限公司

Current collector carbon coated aluminum foil and its preparation method

The invention discloses a current collector carbon coated aluminum foil and its preparation method. A carbon-containing composite layer is arranged on the substrate of the current collector carbon coated aluminum foil, and is combined with the substrate through a binder, wherein the thickness of the carbon-containing composite layer is 1-100mum; the carbon-containing composite layer comprises granular conductive carbon black pre-dispersed by a dispersant, and fibrous conductive carbon; the granular conductive carbon black and the fibrous conductive carbon filled between the layers of the granular conductive carbon black form a netted node form conductive network. The composite layer is tightly combined with the substrate of the aluminum foil, so the conductivity and the corrosion resistance of the aluminum foil are improved, and the aluminum foil is protected from oxidation or chemical corrosion. The preparation method of the aluminum foil comprises the following operations: mixing the conductive carbon black with the dispersant in an organic solvent to pre-disperse, adding the fibrous conductive carbon, uniformly mixing, adding the binder to prepare a slurry, coating on the aluminum foil, and carrying out vacuum drying. The current collector carbon coated aluminum foil enables the interface impedances of the current collector and an active layer to be reduced, the internal resistance of a battery to be reduced, and the cycle life and the ratio performances of the battery to be improved when the aluminum foil is used as a lithium ion battery anode current collector. The aluminum foil has the advantages of simple technology, low cost and wide application prospect.
Owner:HUNAN CMAX NEW ENERGY TECH

Hard carbon coated lithium ion battery anode material and preparation method thereof

The invention discloses a hard carbon coated lithium ion battery anode material and a preparation method thereof. The anode material is characterized in that the coating material is formed by a heteroatom modifier, a hard carbon precursor material and a soft carbon precursor material, wherein the weight ratio of the heteroatom modifier to the hard carbon precursor to the soft carbon precursor is 1:(2-3.3):(3-9). The preparation method is mainly characterized by comprising the following steps: fully mixing graphite and the coating material, and then carrying out heat treatment on the mixture under the protection of inert atmosphere; preserving the temperature for 0.5-6 hours, and then cooling; and carrying out secondary high-temperature graphitization treatment under the protection of inert atmosphere. The heteroatom modifier can change the structure of the hard carbon in the coating material, and the hard carbon precursor has the characteristics of dissolvability and condensation polymerization with the soft carbon precursor asphalt, thus improving the uniformity and operability of the coated graphite particles; and the ratio of the heteroatom modifier to the hard carbon precursor to the soft carbon precursor has an important effect on the performance of the three. By optimizing the ratio of the heteroatom to the hard carbon precursor to the soft carbon precursor in the coated graphite material, the aims of increasing the capacity of the anode material and improving the cycle performance of the anode material are achieved.
Owner:湖南摩根海容新材料有限责任公司

Hydrothermal synthesis method for lithium ferromanganese phosphate anode material of lithium ion battery

The invention relates to a hydrothermal synthesis method for lithium ferromanganese phosphate anode material of a lithium ion battery, belonging to the technical field of lithium ion batteries. The method has the following processing steps of: step 1, preparing LiMnxFe1-xPO4 through a hydrothermal synthesis reaction: mixing an aqueous lithium hydroxide solution, an aqueous ferrous sulfate solution and phosphoric acid under a stirring condition, after sealing, heating to 150 DEG C to 180 DEG C within 0.5 to 2 h, reacting for 0.5-4 h under the pressure of 0.48-1.0 Mpa, cooling to less than 80 DEG C, and filtering; step 2, mixing with organic matters and drying: mixing a wet filter cake with a soluble carbon source organic matter, and carrying out spray drying or expansion drying; and step 3, carrying out carbon-coated processing: roasting LiMnxFe1-xPO4 carbon source compound powder at a temperature between 600 DEG C and 750 DEG C for 4-6 h under an insert gas condition, and cooling to less than 150 DEG C to obtain a carbon-coated lithium ferromanganese phosphate anode material of the lithium ion battery. The hydrothermal synthesis method disclosed by the invention has the advantages of simple and controllable technology, convenience for operation, low cost, high crystallization degree of products, uniform dispersion, high specific capacity, high conservation rate of the cycling capacity, and the like.
Owner:朱鸥鹭
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products