Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

27679results about How to "Good adhesion" patented technology

Targeted and high density drug loaded polymeric materials

Polymeric delivery devices have been developed which combine high loading/high density of molecules to be delivered with the option of targeting. As used herein, “high density” refers to microparticles having a high density of ligands or coupling agents, which is in the range of 1000-10,000,000, more preferably between 10,000 and 1,000,000 ligands per square micron of microparticle surface area. A general method for incorporating molecules into the surface of biocompatible polymers using materials with an HLB of less than 10, more preferably less than 5, such as fatty acids, has been developed. Because of its ease, generality and flexibility, this method has widespread utility in modifying the surface of polymeric materials for applications in drug delivery and tissue engineering, as well other other fields. Targeted polymeric microparticles have also been developed which encapsulate therapeutic compounds such as drugs, cellular materials or components, and antigens, and have targeting ligands directly bound to the microparticle surface. Preferred applications include use in tissue engineering matrices, wound dressings, bone repair or regeneration materials, and other applications where the microparticles are retained at the site of application or implantation. Another preferred application is in the use of microparticles to deliver anti-proliferative agents to the lining of blood vessels following angioplasty, transplantation or bypass surgery to prevent or decrease restenosis, and in cancer therapy. In still another application, the microparticles are used to treat or prevent macular degeneration when administered to the eye, where agents such as complement inhibitors are administered.
Owner:YALE UNIV

Artificial valve prosthesis with improved flow dynamics

An expandable venous valve having a support structure that configured to enlarge the area adjacent to the valve structure such that the flow patterns of retrograde flow are modified in a way that facilitates the flushing of the pockets at the base of the valve area to prevent stagnation of bodily fluid, which in the venous system, can lead to thrombus formation. The enlarged pocket areas can be created by forming an artificial sinus adjacent the valve structure in an unsupported section of vessel wall between two support frame section or the support frame can comprise an expanded-diameter intermediate or proximal section that forms an artificial sinus adjacent the valve structure. In another group of embodiments, the attachment pathway between opposing leaflets and the support frame and / or vessel wall comprises a proximal portion that places the leaflets in extended contact with one another and a distal portion forms a large angle with respect to the adjacent walls such that a large pocket is created at the base of the leaflets. In one embodiment, the attachment pathway extends distally along a pair of substantially parallel longitudinal attachment struts to create an extended leaflet contact area, then angles circumferentially and distally from the former along distal attachment struts to define the bottom edge of the leaflets.
Owner:COOK MEDICAL TECH LLC

Electro-optic window incorporating a discrete photovoltaic device and apparatus for making same

An electro-optic window is provided which is powered solely by at least one discrete photovoltaic cell within an electro-optic window. The electro-optic window has front and back spaced-apart glass elements sealably bonded together in a spaced-apart relationship and defining a chamber filled with an electro-optic material. The front glass element has a transparent conductive layer on the face of the front glass element confronting the rear glass element and the rear glass element has a transparent conductive layer on the face confronting the front glass element. The seal is generally disposed along the perimeter of three edges of both glass elements and some distance in from the remaining (fourth) edge. The photovoltaic assembly is electrically connected to the two transparent conductive layers and is placed on the outer perimeter along this fourth edge with the photon-absorbing side of all the photovoltaic cells within the photovoltaic assembly facing in one direction ("out" the window). When light impinges on the photovoltaic cell a current is created which darkens the electro-optic material in proportion to the amount of impinging light. By choosing the relative area of the photovoltaic assembly to produce the correct current for the electro-optically active window area, the darkening of the electro-optic portion can be directly and accurately controlled without the need for any circuit, wires or shorting resistors. In addition, an apparatus for making an electro-optic window having two members capable of securing and holding two glass elements in a spaced-apart and parallel relationship is provided. The glass elements may be secured by vacuum-applying members or simple clips. The glass elements may be held in a spaced-apart and parallel relationship by a hydraulic mechanism or by simple spacers placed between the securing members.
Owner:GENTEX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products