Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3367 results about "Solid state electrolyte" patented technology

All-solid state lithium ion battery composite positive electrode material and preparation method thereof, and all-solid state lithium ion battery

Embodiments of the present invention provide an all-solid state lithium ion battery composite positive electrode material, which comprises a positive electrode active material and a cladding layer arranged on the surface of the positive electrode active material, the positive electrode active material is one or a plurality of materials selected from a lithium cobalt oxide, lithium nickelate, lithium manganate, lithium iron phosphate, lithium nickel cobalt manganese, vanadium pentoxide, molybdenum trioxide and titanium disulfide, and the cladding layer material is one or a plurality of lithium-containing transition metal oxides. According to the present invention, with the cladding layer, formation of the space charge layer can be effectively inhibited, the electrode / inorganic solid state electrolyte interface can be improved, and the interface resistance of the all-solid state lithium ion battery can be easily reduced so as to improve cycle stability and durability of the all-solid state lithium ion battery. Embodiments of the present invention further provide a preparation method for the all-solid state lithium ion battery composite positive electrode material, and an all-solid state lithium ion battery containing the all-solid state lithium ion battery composite positive electrode material.
Owner:泰州市海通资产管理有限公司

Preparation method of all-solid polymer electrolyte through in-situ ring opening polymerization of epoxy compound, and application of the all-solid polymer electrolyte in all-solid lithium battery

The invention discloses a preparation method of an all-solid polymer electrolyte through in-situ ring opening polymerization of an epoxy compound, and an application of the all-solid polymer electrolyte in an all-solid battery. The preparation method is characterized in that a liquid-state epoxy compound, a lithium salt, a battery additive and the like are employed as precursors and are injected into between a positive pole sheet and a negative pole sheet of the battery, and under a heating condition, in-situ polymerization solidification is carried out to form the all-solid polymer electrolyte, and furthermore, the all-solid battery is produced. The ionic conductivity at room temperature of the all-solid polymer electrolyte can reach from 1*10<-5> S/cm to 9*10<-3> S/cm and electric potential window is 3.5-5 V. The all-solid polymer electrolyte is prepared through the in-situ copolymerization method, so that the all-solid polymer electrolyte has excellent contact with electrodes, thereby greatly improving interface compatibility of the solid-state battery, reducing interface wetting and modification steps of the solid-state battery, reducing production cost of the solid-state battery and improving performances of the solid-state battery. The invention also discloses an all-solid polymer lithium battery assembled from the all-solid polymer electrolyte.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Composite quasi-solid-state electrolyte and preparation method thereof, and lithium battery or lithium ion battery containing composite quasi-solid-state electrolyte

The present invention provides a composite quasi-solid-state electrolyte, a composite quasi-solid-state electrolyte membrane, preparation methods of composite quasi-solid-state electrolyte and the composite quasi-solid-state electrolyte membrane, and a lithium battery or a lithium ion battery containing the composite quasi-solid-state electrolyte membrane. The composite quasi-solid-state electrolyte comprises a solid electrolyte, a lithium salt-containing liquid electrolyte, inorganic nanoparticles and a binder, wherein the static electricity or functional groups on the surface of the inorganic nanoparticles can adsorb the electrolyte so as to make the composite quasi-solid-state electrolyte have strong adsorption capacity and strong liquid retention ability, and the inorganic nanoparticles can adsorb the lithium salt so as to change the lithium ion conduction mechanism, reduce the interfacial resistance between the liquid electrolyte and the solid-state electrolyte, change the deposition morphology of lithium, hinder the formation of lithium dendrite, and reduce the pulverization of lithium. In addition, by adding the solid electrolyte, the composite quasi-solid-state electrolyteof the present invention can maintain the high conductivity and can effectively reduce the content of the liquid electrolyte so as to improve the safety of the battery.
Owner:BEIJING WELION NEW ENERGY TECH CO LTD

Preparation method of improved room temperature electron ion fast transfer electrode slice for solid-state secondary lithium battery

The invention discloses a preparation method of an improved room temperature electron ion fast transfer electrode slicefor a solid-state secondary lithium battery. The method comprises the following steps: (1) evenly mixing an active material, a conductive agent and a fast ion conductor according to a certain proportion; (2) adding a certain amount of a binder into the mixture, and mixing uniformly to obtain a uniform slurry; and (3) preparing the slurry into slices, and drying to obtain the required electrode slice. The preparation method of the electrode slice preparation uses the fast ion conductor material with high temperature high lithium ion conductivity; the material can play the role of increasing the contact area between the active particles and solid electrolyte, and he form a three-dimensional electron and lithium ion transport network, so as to ensure the rapid conduction of the electrons in the electrode also improve the transmission rate of lithium ions between the active particles and electrolyte. Therefore, the preparation method is beneficial to reducing the interface impedance among the active particles in the electrode slice and between the active particles and the solid electrolyte, thereby increasing the power rate performance of the solid-state secondary lithium battery.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Combined electrode of battery and preparation method thereof

The application relates to the field of energy storage materials, and discloses a combined electrode with ultrahigh electron and ionic conductivity and a preparation method thereof. The combined electrode is formed in a manner that a battery active material is uniformly tied in a three-dimensional multi-hole network formed by carbon nano tubes which are connected in a crossing manner, and meshes and the surface of the active material are filled or coated with a solid electrolyte material. According to the combined electrode, the carbon nano tubes, which are communicated with one another, can form an ultrahigh electrical transmission network, on the one hand, a solid electrolyte can provide the ultrahigh lithium-ion transmission capacity while not influencing the connection of the carbon nano tubes and the conductive capacity of the electrode; on the other hand, the three-dimensional network formed by the carbon nano tubes is also fixed by virtue of the solid electrolyte, the formation of a solid electrolyte interface is controlled, and an active material is protected under the high charge-discharge voltage. The combined electrode has the high reversible capacity and the enhanced rate capability, and can meet the requirement of a power automobile or a mixed power automobile.
Owner:PEKING UNIV SHENZHEN GRADUATE SCHOOL

Metal lithium negative electrode of lithium battery

The invention discloses a metal lithium negative electrode of a lithium battery. A solid-state electrolyte protection layer is on the surface of the metal lithium negative electrode. By performing electrochemical pretreatment on the lithium negative electrode, an efficient and stable solid-state electrolyte interface membrane is introduced to the surface of a lithium sheet; in the repeated deposition and separation processes of lithium ions, the solid-state electrolyte protection layer can suppress appearance of dendritic crystals and improve safety performance of the battery; in addition, the electrolyte and metal lithium also can be isolated to protect the lithium metal from being corroded by the electrolyte; by virtue of an electroplating process and screening of electrolyte types, effective protection of the metal lithium negative electrode is realized, and the cycle life of the lithium metal battery is prolonged; and compared with an unprocessed lithium negative electrode, the metal lithium negative electrode protected by the solid-state electrolyte layer can effectively suppress appearance of dendritic crystal-shaped lithium sediments, reduce secondary reactions of the electrolyte and the metal lithium, and improve cycling efficiency and cycling stability, thereby prolonging the cycle life of the lithium metal battery which takes the metal lithium as the negative electrode.
Owner:TSINGHUA UNIV

Modified lithium-based composite negative material for solid state battery and preparation and application of material

InactiveCN109841817AOptimize interface compositionImprove cyclic charge and discharge capacityElectrode manufacturing processesSecondary cellsSolid state electrolyteInterfacial resistance
The invention relates to a modified lithium-based composite negative material for a solid state battery and preparation and application of the material. The modified lithium-based composite negative material comprises 50-95 parts of lithium and 5-50 parts of a modified additive by weight; and the modified additive comprises one or multiple nitride or fluoride. The preparation method comprises thatthe lithium and modified additive are mixed, heated to 180-400 DEG C, stirred uniformly, and cooled to the room temperature; and the modified composite negative material is used to the solid state battery, and combined with a solid electrolyte. Compared with the prior art, the lithium metal is mixed with the modified additive by mixing in a heating fusing way, the surface energy of the lithium metal can be reduced effectively, elements including nitrogen and fluorine are introduced in a controllable way, the interfacial resistance between the solid electrolyte and lithium cathode is reduced effectively, the limit current that can be born by the solid electrolyte is increased, the recyclable charge and discharge capacity is improved, and the solid electrolyte and cathode interface is stable for a longer time in the long circulation process.
Owner:TONGJI UNIV

Solid-state composite metal lithium negative electrode

The invention provides a solid-state composite metal lithium negative electrode. The solid-state composite metal lithium negative electrode consists of a composite layer and a solid-state electrolyteprotecting layer, wherein the composite layer consists of metal lithium and lithium-favoring framework material; the solid-state electrolyte protecting layer comprises an inorganic solid-state electrolyte and an organic solid-state electrolyte; the composite layer of metal lithium and lithium-favoring framework material is provided by melting and lithium filling, electrochemical deposition or physical and mechanical mixing; the solid-state electrolyte protecting layer is applied to the surface of the composite layer by impregnating, scrape coating, rotary coating, spray coating or spattering.Compared with the common lithium piece negative electrode, the solid-state composite metal lithium negative electrode has the advantages that the problem of volume expansion of the negative electrodeis relieved, the deposition behavior of the metal lithium can be regulated and controlled, the growth of lithium dendrites can be inhibited, the safety property of a metal lithium battery is improved,and the cycle life of the metal lithium battery is prolonged; in the testing process of a lithium and copper semi-battery, the volume is expanded by 1 to 20% in the charge and discharge process, theobvious dendrites do not occur in the 20 to 5000 cycles of the battery, and the utilization rate is increased to 80 to 99.9999%.
Owner:TSINGHUA UNIV

Inorganic-organic nano composite solid electrolyte membrane and preparation method and application thereof

The present invention discloses an inorganic-organic nano composite solid electrolyte membrane and a preparation method and application thereof. The composite solid electrolyte is a novel inorganic-organic nanocomposite combining the respective advantages of inorganic ceramic solid electrolyte and organic polymer electrolyte and is composed of a negative electrode protective layer, a support layerand a positive electrode interface layer. The support layer plays a supporting role, and the main component of the negative electrode protective layer is the inorganic solid electrolyte with good mechanical properties, which can effectively inhibit the growth of lithium dendrite; and the positive electrode interface layer is mainly composed of organic polymer electrolyte with good flexibility, ensures good contact with active materials and provides a continuous ion transport channel. In the present invention, the composite solid electrolyte with good interface compatibility is prepared by coating on both sides of the support layer, and the process is simple and efficient. The composite solid electrolyte can effectively inhibit dendritic crystal and reduces interface resistance so that a solid lithium metal battery has higher energy density and longer cycle life.
Owner:SHANXI INST OF COAL CHEM CHINESE ACAD OF SCI

Lithium-sulfur battery

The present invention relates to a lithium-sulfur battery, which comprises a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode comprises a positive electrode current collector and a positive electrode active material involved in an electrochemical reaction, the positive electrode active material comprises a thio material, the negative electrode comprises a negative electrode current collector and a negative electrode active material selected from metal lithium, a lithium alloy, lithium-carbon and a silicon base material, a pre-lithium embedding treatment is performed on the positive electrode and / or the negative electrode when the selected thio material and the silicon base material do not contain lithium, and the electrolyte is a solid state electrolyte containing a lithium super-ion conductor material. According to the solid state lithium-sulfur battery, loss of an intermediate product lithium polysulphide during a positive electrode charge and discharge process is avoided, the solid state electrolyte has high ionic conductance so as to improve energy density and cycle life of the lithium-sulfur battery, the packaging process of the lithium-sulfur battery adopting the solid state electrolyte is simpler than the packaging process of the lithium-sulfur battery adopting the liquid state electrolyte, and the lithium-sulfur battery is easy to industrialize.
Owner:POSITEC POWER TOOLS (SUZHOU) CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products