Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1847results about How to "Improve interface compatibility" patented technology

Preparation method of all-solid polymer electrolyte through in-situ ring opening polymerization of epoxy compound, and application of the all-solid polymer electrolyte in all-solid lithium battery

The invention discloses a preparation method of an all-solid polymer electrolyte through in-situ ring opening polymerization of an epoxy compound, and an application of the all-solid polymer electrolyte in an all-solid battery. The preparation method is characterized in that a liquid-state epoxy compound, a lithium salt, a battery additive and the like are employed as precursors and are injected into between a positive pole sheet and a negative pole sheet of the battery, and under a heating condition, in-situ polymerization solidification is carried out to form the all-solid polymer electrolyte, and furthermore, the all-solid battery is produced. The ionic conductivity at room temperature of the all-solid polymer electrolyte can reach from 1*10<-5> S/cm to 9*10<-3> S/cm and electric potential window is 3.5-5 V. The all-solid polymer electrolyte is prepared through the in-situ copolymerization method, so that the all-solid polymer electrolyte has excellent contact with electrodes, thereby greatly improving interface compatibility of the solid-state battery, reducing interface wetting and modification steps of the solid-state battery, reducing production cost of the solid-state battery and improving performances of the solid-state battery. The invention also discloses an all-solid polymer lithium battery assembled from the all-solid polymer electrolyte.
Owner:QINGDAO INST OF BIOENERGY & BIOPROCESS TECH CHINESE ACADEMY OF SCI

Preparation method of semi-interpenetrating network polymer gel electrolyte membrane

The invention provides a preparation method of a semi-interpenetrating network polymer gel electrolyte membrane. The method comprises the following steps: (A) adding a linear polymer and a solvent to a sample bottle, stirring and dissolving the linear polymer and the solvent, adding polyethylene glycol dimethyl acrylic ester, vinylene carbonate and a photoinitiator, and mixing the polyethylene glycol dimethyl acrylic ester, the vinylene carbonate and the photoinitiator evenly to form a solution; (B) coating a glass plate with the solution, covering a layer of glass plate to form a sandwich structure, and curing the sandwich structure to obtain an ultraviolet-cured semi-interpenetrating network polymer membrane; and (C) immersing the ultraviolet-cured semi-interpenetrating network polymer membrane into liquid electrolyte. According to the gel electrolyte provided by the invention, the balance between the ionic conductivity and the mechanical property is relatively well realized; the ionic conductivity at room temperature can be up to 1.49*10<-3>S cm<-1>; the mechanical property is good; the heat stability is good; the electrolyte can be prevented from leaking; the interface stability is good; and a lithium iron phosphate / metal lithium battery assembled by the gel polymer electrolyte membrane has excellent cycle performance and rate performance.
Owner:SHANGHAI JIAO TONG UNIV

High-entropy alloy particle reinforced aluminum base composite material and stirring casting preparation process thereof

ActiveCN105478724AAvoid interfacial chemical reactionsAvoid formingHigh entropy alloysToughness
The invention discloses a high-entropy alloy particle reinforced aluminum base composite material and a stirring casting preparation process thereof. The preparation process adopts mechanical alloying to prepare high-entropy alloy powder and screen to obtain high-entropy alloy particles; the high-entropy alloy particles are sealed by adopting an aluminum alloy pipe having the same material with a basal body; the aluminum alloy pipe weighed in a segmented manner is added in the molten basal body; the high-entropy alloy particles are dispersed by a stirring mode; and the high-entropy alloy particle reinforced aluminum base composite material is prepared by a casting process. The high-entropy alloy particles are 0.1-35%; aluminum alloys are 65-99.9%; and the sum of the two is 1. The high-entropy alloy particles in the structure of the prepared composite material are uniformly dispersed; the high-entropy alloy and aluminum alloy interface bonding compatibility is excellent; the strength and the toughness are excellent; the preparation process is simple; the powder has no need to be treated; the cost is low; the stability is good; and the composite material is suitable for large-batch production and standard production, and is excellent in promotion and application prospect.
Owner:GUANGDONG XINGFA ALUMINUM +1

Nylon engineering plastics for high-speed transit railway track and manufacture method thereof

The invention relates to nylon engineering plastics and a manufacture method thereof, in particular to nylon engineering plastics for high-speed transit railway tracks and a manufacture method thereof. The nylon engineering plastics comprise the following components in percentage by weight: 35 to 60 percent of nylon resin, 20 to 35 percent of glass fibre, 0 to 10 percent of inorganic mineral, 16 to 30 percent of compatilizer, 0.3 to 0.5 percent of light stabilizer, 0.1 to 0.3 percent of coupling agent, 0.1 to 0.5 percent of antioxygen and 0.4 to 1 percent of lubricant, wherein the compatilizer is one kind of or a mixture of two kinds of Maleic anhydride grafted EPDM (Ethylene Propylene Diene Monomer) rubber and maleic anhydride grafted POE (Polyolefin Elastomer), and the melt flow rate of the compatilizer is 0.5 to 1.5g/10min. The manufacture method comprises the steps of: adding the compatilizer into an extruder in a lateral feeding addition method under the condition that the melt temperature is 220 to 280 DEG C and the mixing time is 1-5min; and controlling the rotate speed of a screw between 300 and 450rpm. According to the invention, the tensile strength, the impact toughness and the size stability can all meet the requirements for the operation of high-speed trains with running speed more than 300km/h.
Owner:NANJING JULONG SCI&TECH CO LTD

Composite heat-insulating wallboard and preparation method thereof

The invention discloses a composite heat-insulating wallboard and a preparation method thereof and relates to a heat-insulating wallboard. The heat-insulating wallboard is provided with two layers of calcium silicate plates, wherein a heat-insulating core material is clamped between the two layers of calcium silicate plates and is prepared from cement, coal ash, gypsum, expandable polystyrene (EPS), Maleamic Acid-Isobutyl Polyhedral Oligomeric Silsesquioxane (POSS), emulsion powder, a water reducing agent, a foaming agent and an early strength agent. Dry POSS powder is dissolved in normal hexane and then the solution is sprayed onto the surface of EPS particles to obtain substance A; the cement, the coal ash, the gypsum and the emulsion powder are drily stirred, water is added into the mixture, the mixture is stirred into paste, the substance A is added into the paste to form a slurry B; the foaming agent solution is stirred through a stirrer to form foam C; the slurry B and the foam C are mixed to obtain a heat-insulating core material slurry; the surfaces of the calcium silicate plates are brushed and washed, the calcium silicate plates are placed on the two sides of a fixed mold, the heat-insulating core material slurry is poured into the middle of the two calcium silicate plates, and the mold is vibrated to mold the slurry; and the mold is de-molded, and after watering to maintain, the wallboard is obtained.
Owner:XIAMEN UNIV +1

High-dipping-property alkali-free glass fiber impregnating agent for LFT reinforced polypropylene as well as application thereof

The invention relates to a high-dipping-property alkali-free glass fiber impregnating agent for LFT reinforced polypropylene as well as the application thereof. The impregnating agent comprises a pH value regulator, a silane coupling agent, a film-forming agent A, a film-forming agent B, a lubricating agent, a surfactant, an antioxidant and deionized water, wherein the film-forming agent A is a maleic anhydride grafted and modified polypropylene wax emulsion; the film-forming agent B is a maleic anhydride grafted and modified polyethylene emulsion; the lubricating agent is the combination of aPEG lubricating agent and a mineral oil lubricating agent; the surfactant is the combination of microcrystalline wax emulsion and cationic polyacrylamide emulsion; and the antixodiant hypophosphite is hypophosphite. The invention also provides the application of the impregnating agent to production of alkali-free glass fiber for the LFT reinforced polypropylene. The glass fiber produced by the impregnating agent has a high interface bonding property, can be rapidly fused with polypropylene resin at high temperature, is high in dipping speed, has good processing property, high wear resistanceand little filoplume, and has a high dipping property, so that the production efficiency can be improved and the production cost can be reduced.
Owner:JUSHI GRP CO

Preparation method for lactide grafted plant fiber reinforced poly lactic acid composite material

The invention discloses a preparation method for a lactide grafted plant fiber reinforced poly lactic acid composite material. The preparation method comprises: carrying out an alkali liquid soaking treatment on plant fibers, and drying; mixing the resulting plant fibers and a lactide monomer; carrying out a graft reaction under an anhydrous and anaerobic condition under a catalysis effect of stannous octanoate to obtain lactide grafted plant fibers; drying; mixing the dried lactide grafted plant fibers and ungrafted plant fibers; and carrying out blending, hot pressing molding and cooling shaping on the mixed fibers and completely-molten poly lactic acid to obtain the composite material. According to the present invention, lactide ring opening polymerization is adopted to carry out a graft treatment on plant fibers to change surface polarity of the fibers so as to improve interface compatibility between the plant fibers and the poly lactic acid matrix, and improve the whole performance of the composite material; compared with pure poly lactic acid and untreated plant fiber reinforced poly lactic acid composite materials, the composite material prepared by the preparation method of the present invention has the following characteristics that: interface properties between the plant fibers and the poly lactic acid matrix, and mechanical properties are significantly improved.
Owner:SOUTH CHINA UNIV OF TECH

Method for preparing aqueous graphene/epoxy resin nanocomposite material

ActiveCN104231547AExcellent interfacial compatibility and binding forceImprove bindingGraphite oxideFirming agent
The invention discloses a method for preparing an aqueous graphene/epoxy resin nanocomposite material. The method comprises the following specific steps: carrying out functional modification and dispersion on graphene oxide obtained through a Hummers method, so as to obtain a high-concentration aqueous graphene dispersion solution; adding epoxy resin into the aqueous graphene dispersion solution, uniformly stirring, then, dewatering under the vacuum condition, adding a curing agent and mixing; carrying out high-temperature curing, thereby obtaining the graphene/epoxy resin nanocomposite material. According to the method, the operating process is simple, convenient and controllable, so that large-batch preparation and synthesis are facilitated; through obtaining the highly-stable aqueous graphene dispersion solution, graphene and epoxy resin can have excellent interface compatibility and adhesion; the matrix adhesion, corrosion resistance and impact resistance of epoxy resin are effectively improved; compared with the conventional aqueous epoxy resin materials, the aqueous graphene/epoxy resin nanocomposite material prepared by the method has the advantages that the hardness is improved by 1.5 times, and the impact resistance is improved by 12 times.
Owner:QINGDAO REALEADER ADVANCED MATERIALS TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products