Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

955 results about "Composite polymer" patented technology

Method to manufacture composite polymer electrolyte membranes coated with inorganic thin films for fuel cells

The present invention relates to a method for manufacturing composite polymer electrolyte membranes coated with inorganic thin films for fuel cells using a plasma enhanced chemical vapor deposition (PECVD) method or a reactive sputtering method, so as to reduce the crossover of methanol through polymer electrolyte membranes for fuel cells and enhance the performance of the fuel cells. The manufacturing method of composite polymer electrolyte membranes coated with inorganic thin films for fuel cells according to the present invention is characterized to obtain composite membranes by coating the surface of commercial composite polymer electrolyte membranes for fuel cells with inorganic thin films using a PECVD method or a reactive sputtering method. The inorganic materials to form the inorganic thin films are chosen one or more from the group comprising silicon oxide (SiO2), titanium oxide (TiO2), zirconium oxide (ZrO2), zirconium phosphate (Zr(HPO4)2), zeolite, silicalite, and aluminum oxide (Al2O3). The present invention, by coating the polymer electrolyte membranes for fuel cells with inorganic thin films via a PECVD method or a reactive sputtering method, reduces the methanol crossover sizably without seriously reducing the ionic conductivity of polymer electrolyte membranes, thereby, when applied to fuel cells, realizes a high performance of fuel cells.
Owner:KOREA INST OF SCI & TECH

Preparation method of multi-layer composite-structure filter membrane

The invention relates to a method for preparing a multi-layer composite-structure filter membrane with a plasma pretreatment method. According to the filter membrane, a polymer nano-grade fiber film layer prepared through an electrostatic spinning method, and a hydrophilic polymer ultra-thin separation layer are sequentially arranged on a non-woven fabric support layer substrate. Before the hydrophilic polymer ultra-thin separation layer is prepared through an interfacial polymerization reaction, the plasma pretreatment is carried out on the surface of the polymer nano-grade fiber film layer, such that functional groups are grafted on the surface of the polymer nano-grade fiber. Therefore, polymer nano-grade fiber film surface property is improved, such that the polymer ultra-thin separation layer can be better compounded, and the filtering performance of the multi-layer composite-structure filter membrane is comprehensively improved. The multi-layer composite-structure filter membrane provided by the invention has the characteristics of high water flux, high retention rate, and stable chemical property. The film can be used in productions of water used in special conditions, such as domestic water and drinking water. The film is suitable to be used in fields such as medicines, foodstuffs, environment protection, and the like.
Owner:INST OF CHEM CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products