Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1935 results about "Colloidal Solution" patented technology

A colloidal solution, sometimes known as a colloidal suspension, is a solution in which a material is evenly suspended in a liquid. In other words, a colloid is a microscopically small substance that is equally dispersed throughout another material.

A kind of preparation method of graphene material

The invention discloses a preparation method of a graphene material. The preparation method comprises the following steps of: with graphite carbon as a raw material, adding potassium hypermanganate and concentrated sulfuric acid in batches in different stages to control an oxidation process of graphite; adjusting the pH value of the oxidized solution to obtain graphene oxide colloidal dispersing solutions (GOS) with different concentrations; dropwise adding the GOS on the surface of a carrier or spreading out the GOS on a non-intersolubility liquid/liquid interface and drawing into a grapheneoxide thin-film (GOF); carrying out high-speed centrifugation and drying treatment on the GOS to obtain graphene oxide solid powder (GOP); reducing the GOS by selecting an appropriate reducing agent,and centrifugally drying to obtain reduced graphene solid powder (GRP); dispersing a proper amount of GRP in an organic solvent to prepare a reduced graphene oxide colloidal dispersing solution (GRS); and dropwise adding the GRS on the surface of the carrier or spreading out on the non-intersolubility liquid/liquid interface and drawing into the reduced graphene thin-film (GRF). Various graphene materials prepared by the invention are easy to mutually transform; and the concentration of the colloidal solution and the thickness of the thin-film can be controlled in a certain range.
Owner:CENT SOUTH UNIV

Mesoporous graphite type carbon nitride/nitrogen doped graphene sol nanocomposite and method for preparing same

The invention belongs to the technical field of new energy materials and preparation thereof, and relates to a mesoporous graphite type carbon nitride/nitrogen doped graphene sol nanocomposite and a method for preparing the same. The method comprises the following steps that: graphene oxide and a surfactant are added into deionized water and are ultrasonically mixed uniformly to obtain a colloidal solution; mesoporous graphite type carbon nitride is added to be continuously and ultrasonically treated, and a nitrogen-containing compound is then added to be stirred at constant temperature to form a mixed solution; and hydrothermal reaction and natural cooling are then carried out, ammonia which is adsorbed to a material surface is removed through washing, and the material is dried. The yield of the prepared mesoporous graphite type carbon nitride/nitrogen doped graphene sol nanocomposite is high, and the mesoporous graphite type carbon nitride/nitrogen doped graphene sol nanocomposite has a wide application scope, can be applied to fuel cells, photodegradation reactors and the like. The method has the advantages of simplicity in technology, low cost, high yield, short period and environmental friendliness, and can be suitable for industrially producing the mesoporous graphite type carbon nitride/nitrogen doped graphene sol nanocomposite in a large scale.
Owner:TONGJI UNIV

Halide-based scintillator nanomaterial

Scintillator material comprising nanoparticles (nanocrystals) comprising lead (Pb), iodine (I), and optionally one or both of oxygen (O) and hydrogen (H) wherein the nanoparticles exhibit room-temperature scintillation under gamma irradiation. The scintillator nanoparticles can comprise Pb3O2I2. The scintillator nanoparticles can comprise PbIOH in generally equiatomic proportions or non-equiatomic variants thereof that exhibit scintillation under gamma irradiation. The scintillator nanoparticles have a particle dimension in the range of about 5 to about 100 nm. Microparticles (microcrystals) also are provided comprising lead (Pb), iodine (I), and optionally one or both of oxygen (O) and hydrogen (H) grown in a nanoparticle colloidal solution over time to a particle dimension greater than 0.1 μm, such as about 2 microns. A heterogeneous scintillator material is provided comprising core/shell nanoparticles having a highly hygroscopic or deliquescent halide-based core activated with trivalent Ln3+ or divalent Ln2+ lanthanide ions (Ln=La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and a stable non-hygroscopic shell thereon. The heterogeneous nanoparticles can comprise highly hygroscopic lanthanide halide (LaBr3, LuI3) cores protected with stable non-hygroscopic LaF3 shells. The heterogeneous nanoparticles can comprise deliquescent alkaline earth halide (SrI2, BaI2) cores protected with stable non-hygroscopic (SrF2, BaF2) shells.
Owner:STC UNM

Method for preparing corrosion-resisting and self-cleaning coating

The invention discloses a method for preparing a coating having corrosion-resisting and self-cleaning functions, which belongs to the field of new materials. The method comprises the following steps: cleaning and drying the surface of a coated material; utilizing a sol thermo-curing method to prepare an oxide connecting layer on the surface of the coated material substrate; coating a prepared colloidal solution containing nanometer solid grains onto the oxide connecting layer; and after forming a film and curing, coating a material with low surface energy on the surface, thereby obtaining the surface having a self-cleaning function. The surface of a product obtained in the technique of the method is higher in hydrophobic property, is capable of achieving a self-cleaning effect and is ultrahigh in corrosion resistance. The method has the advantages that the demand on equipment is low; the method is free from being limited by the shape of the surface of the coated material; the material substrates, such as ceramics, glass, metal and the like, can be subjected to coating and film-forming treatment according to the method; industrialization is easily realized; and the product after being subjected to the coating and film-forming treatment can be applied to various severe corroding environments and has an ultrahigh application value.
Owner:TSINGHUA UNIV

Slow release fertilizer applicable to water-fertilizer integration and preparation method thereof

ActiveCN103910586ATo achieve the purpose of slow release and controlled releaseSuitable for integrationFertilizer mixturesPolymer dissolutionOrganic solvent
The invention discloses a slow release fertilizer applicable to water-fertilizer integration. The slow release fertilizer is a nano capsule slow release fertilizer prepared from nutritional ingredients as core materials and a slow soluble film-forming polymer as a capsule wall material. The slow release fertilizer can be evenly dispersed into the water to form a colloidal solution and achieves the slow release and controlled release targets. The invention further provides a preparation method of the slow release fertilizer. The method comprises the following steps: dissolving the slow soluble film-forming polymer into an organic solvent which is not mixed and dissolved with the water; dispersing a core material water solution into the organic solvent to form a water-in-oil W/O emulsion; and adding the W/O emulsion to the water solution containing protective colloid to disperse, so as to form a W/O/W emulsion, and then evaporating a solvent, so as to form the nano capsule. The slow release fertilizer can be evenly dispersed into water to form the colloidal solution, and can be irrigated together with water; and the capsule wall material is a slow soluble film-forming polymer, and can be slowly dissolved into soil to achieve the controlled release target, secondary pollution to the soil is not generated, and the slow release fertilizer has market function value.
Owner:广西田阳县创新农业综合开发有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products