Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6626 results about "Potassium permanganate" patented technology

Potassium permanganate is an inorganic chemical compound and medication. As a medication it is used for cleaning wounds and dermatitis. It has the chemical formula KMnO₄ and is a salt consisting of K⁺ and MnO⁻₄ ions. It is a strong oxidizing agent. It dissolves in water to give intensely pink or purple solutions, the evaporation of which leaves prismatic purplish-black glistening crystals. In 2000, worldwide production was estimated at 30,000 tonnes. In this compound, manganese is in the +7 oxidation state.

A kind of preparation method of graphene material

The invention discloses a preparation method of a graphene material. The preparation method comprises the following steps of: with graphite carbon as a raw material, adding potassium hypermanganate and concentrated sulfuric acid in batches in different stages to control an oxidation process of graphite; adjusting the pH value of the oxidized solution to obtain graphene oxide colloidal dispersing solutions (GOS) with different concentrations; dropwise adding the GOS on the surface of a carrier or spreading out the GOS on a non-intersolubility liquid/liquid interface and drawing into a grapheneoxide thin-film (GOF); carrying out high-speed centrifugation and drying treatment on the GOS to obtain graphene oxide solid powder (GOP); reducing the GOS by selecting an appropriate reducing agent,and centrifugally drying to obtain reduced graphene solid powder (GRP); dispersing a proper amount of GRP in an organic solvent to prepare a reduced graphene oxide colloidal dispersing solution (GRS); and dropwise adding the GRS on the surface of the carrier or spreading out on the non-intersolubility liquid/liquid interface and drawing into the reduced graphene thin-film (GRF). Various graphene materials prepared by the invention are easy to mutually transform; and the concentration of the colloidal solution and the thickness of the thin-film can be controlled in a certain range.
Owner:CENT SOUTH UNIV

Method for electrochemically preparing graphene

The invention discloses a method for electrochemically preparing graphene, which preferably comprises the steps of pressing a high-purity graphite raw material to form a graphite electrode, carrying out anodization through the graphite electrode by using sulfuric acid aqueous solution or acetic acid and the like mixed acid solution as an electrolyte to prepare a graphite intercalation product, and obtaining expanded graphite by high temperature or microwave and other methods; and then pressing the expanded graphite to prepare a reaction electrode, and carrying out secondary electrochemical intercalation and expansion to finally obtain laminar graphene. According to the invention, in the preparing process, potassium permanganate and other strong oxidizers are not used, and the damage of the strong oxidizers to the structure and performance of graphene are avoided; alkali metal, fuming sulfuric acid oxydol and other inflammable and explosive dangerous substances are not used, and toxic or harmful substances are not introduced, so that the production is safe and environment friendly; and at the same time, the method is simple in process flow, easy to operate, low in cost, high in yield, mild in reaction conditions and low in energy consumption, and is suitable for industrialized large-scale production.
Owner:苏州格瑞丰纳米科技有限公司

Short-spike and root-grafting rapid propagation method for camellia azalea

The invention discloses a short-spike and root-grafting rapid propagation method for camellia azalea. The short-spike and root-grafting rapid propagation method comprises the following steps: selecting general camellia oleifera seeds, sterilizing the general camellia oleifera seeds with potassium permanganate solution and then carrying out stratification, sprouting and anvil culture; after radicles are 3-4 cm in length, grafting the radicles; selecting one-year branches with strongly-grown crown peripheries, full sprout eyes, no pest and disease damage and half lignification to lignification as scions with the length of 2-3 cm; soaking base parts with a plant growth regulator solution; after the scions are grafted, planting the grafted scions in a container bag filled with nutrient-rich substrate on a seed bed in a sunshelter for culturing; and covering, humidifying, shielding and carrying out standard management to form a high-quality grafted container seedling of the camellia azalea. According to the short-spike and root-grafting rapid propagation method, the grafting is realized at the smooth parts of radicles and the root systems of plants are developed, so that the survival rate and the growth amount of nursery stock can be effectively increased and the culture time of the stock is greatly shortened; and the scions are short, and thus the utilization rate and the propagation coefficient of the scions are improved. The short-spike and root-grafting rapid propagation method has the advantages of convenience for operation, high work efficiency and better economic benefit and social benefit; and according to the method, the scale propagation effect of the camellia azalea stock is ensured.
Owner:GUANGXI FORESTRY RES INST

Purificant for adsorbing formaldehyde and method of preparing the same

The invention relates to a formaldehyde purificatory absorbent and a preparation method thereof, which belongs to the technical field of a purificant and a preparation method thereof. The formaldehyde purificatory absorbent uses a porous material as a carrier and the carrier is one or more of activated alumina, sea-foam and zeolite molecular sieve. The preparation method relates to that a steeping fluid is placed into a beaker, added with carrier powders at a steeping temperature ranging from 20 DEG C to 60 DEG C, stirred for 2 through 6 hours, dried at the temperature ranging from 100 DEG C to 140 DEG C after being filtrated and then porphyrized with a mortar. The steeping fluid adopts a strong oxidizer potassium permanganate and is diluted to an acid solution and an organic amine solution of 3 to 8 percent by de-ionized water. The method of the invention adopts the strong oxidizer as an active component and carries out the steeping of the carrier after the active component is coordinated with the solution, when the active component is of even load bearing, thus being able to oxidize the adsorbed formaldehyde molecule to be carbon dioxide desorption and forming the cycle adsorption to enlarge the adsorption capacity thereof. Besides, the method of the invention adopts the acid solution and the organic amine to carry out the steeping modification of the carrier, which improves the characteristics of the carrier, like the structure in the pores or on the surface, the polarity and so on, and enhances the adsorption ability to formaldehyde.
Owner:张宏

Preparation method of composite heat conduction graphene film and composite heat conduction graphene film

The invention discloses a preparation method of a composite heat conduction graphene membrane and the composite heat conduction graphene film. The preparation method comprises the following steps: S1, putting crystalline flake graphite or graphite powder into a mixed solution of concentrated sulfuric acid, potassium persulfate and phosphorus pentoxide, soaking for a day and a night, then carrying out suction filtration, drying, and carrying out pre-oxidizing; S2, oxidizing pre-oxidized graphite further by adopting a Hummers method, that is, oxidizing fully in concentrated sulfuric acid and potassium permanganate, then adding deionized water for diluting, and carrying out repeated washing and suction filtration, so as to obtain an oxidized graphene aqueous solution; S3, spraying the oxidized graphene aqueous solution on a substrate by adopting a thermal spray method, and depositing, so as to obtain an oxidized graphene film; S4, reducing the oxidized graphene film, so as to obtain the graphene film; and S5, laminating the graphene film, so as to obtain the composite heat conduction graphene film. Compared with the prior art, the preparation method is simple, the cost is low, and the prepared composite heat conduction graphene film has a favorable heat conduction performance.
Owner:成都科愿慧希科技有限公司

Biomass curing-forming fuel and preparation method thereof

The invention discloses a biomass curing-forming fuel. The biomass curing-forming fuel consists of straws, saw dust, coal dust, a combustion improver, a sulfur-fixing agent and a dust-falling agent according to parts by weight, wherein the straw is one or combination of the straw of crops such as rice, wheat, soybean, corn, sorghum, cotton, rape and tobacco, a branch and a bark of trees and shrubs, rice hull, chaff and peanut coat; the combustion improver is one or more of table salt, sodium nitrate, potassium permanganate, potassium oxide, sodium nitrite and sodium hypochlorite and capable of realizing decomposition and combustion supporting at different temperatures; the sulfur-fixing agent is in a manner that sodium carbonate, calcium hydroxide and alkyl alcohol amine compounds are synergistically used and is capable of reducing discharging of sulfur dioxide; and the dust-falling agent is selected from iron sesquioxide and capable of lowering a melting point of ash and reducing dust volume. The biomass curing-forming fuel has the advantages that the combustion efficiency is high, the slag bonding and the soot formation are not generated, the black smoke is little, the fire power strong, the combustion is sufficient, the ash does not fly, the biomass curing-forming fuel is clean and sanitary and the like. The invention further discloses a preparation method of the biomass curing-forming fuel.
Owner:JINAN SANNONG ENERGY TECH

Tazobactam synthesis method

The invention relates to a tazobactam synthesis method which comprises the steps of: with 6-APA(Amino Penicillanic Acid) as raw material, preparing a key intermediate 6,6-dihydro penam sulphoxide acid diphenylcarbinol ester through successive reactions of esterification, oxidation, reduetive debromination and the like without separation; then, reacting with 2-triphenyl silicon-1,2,3-triazole; introducing a triazole ring; and finally obtaining the final product of tazobactam through potassium permanganate oxidation and metacresol deprotection. The tazobactam synthesis method is mainly characterized in that a phase transfer catalyst is introduced in the first step, therefore, the reaction rate and the product purity are improved; since an environment-friendly hydrogen peroxide-cobalt acetate catalytic oxidation system is adopted in the third step, the characteristics of good reaction selectivity, high yield, catalyst recyclability and the like are achieved; a method for synthesizing 2 alpha-methyl-2 beta-(1,2,3- triazole-1- radical) methyl penam-3 alpha-carboxylic acid diphenylcarbinol ester by using 2-triphenyl silicon-1,2,3-triazole is adopted in the fifth step, and the tazobactamsynthesis method is simple and convenient to operate, is safe and reliable, shortens the reaction route and improves the total yield. Compared with the traditional process, the tazobactam synthesis method greatly reduces the production cost and the environment pollution and has greater implementation value and economic benefits.
Owner:YIYUAN XINQUAN CHEM

Method of generating hydrogen in drinking water using an enerceutical product added to magnesium in a hydrogen permeable but solute impermeable container

Consuming water with increased hydrogen content can provide clinical benefits to humans and animals through a non-mitochondria alternative cellular energy (ACE) pathway and also as an antioxidant. This application discloses that the hydrogen content of drinking water can be safely increased by placing into the water a hydrogen generating device, such as a mixture of metallic magnesium and EH-101 (HB-101) containing solution, whereby the device allows for the selective passage of the generated hydrogen but restricts the passage of magnesium and EH-101 (HB-101) components. This partitioning of hydrogen from EH-101 (HB-101) components is achieved by using either reverse osmosis membrane, low density plastic material such as polyvinylidene chloride (PVDC or Saran), or low molecular weight cutoff dialysis membrane to create a sealed container of the magnesium and magnesium chloride, that can be placed into drinkable water. The EH-101 (HB-101) can be initially placed into a breakable inner compartment within the hydrogen permeable container. This compartment can be easily broken by simple squeezing just prior to placing the device into the water that is intended to have its hydrogen content increased. The increased hydrogen content can be assessed by the capacity of the water to decolorize a potassium permanganate test sample.
Owner:MARTIN WILLIAM JOHN

Porous grapheme/ MnO2 composite film and preparation method and application thereof

The invention relates to a porous grapheme/ MnO2 composite film and a preparation method and application thereof. The preparation method comprises the following steps of (1), providing a ball-shaped formwork and coating the surface of the ball-shaped formwork with a polymer layer; (2) providing graphene oxide solution, evenly mixing a small formwork ball coated with the polymer layer obtained in the step (1) with the graphene oxide solution, performing vacuum filtration, and stripping the composite film from a filter membrane after drying; (3) performing high temperature annealing on the composite film obtained in the step (2) to obtain a film of a porous structure; (4) putting the film obtained in the step (3) into potassium permanganate solution to perform hydrothermal reaction to obtain the porous grapheme/ MnO2 composite film. No any binder or conductive agent is needed to be added to the porous composite film prepared by the method, and the porous composite film is good mechanical property and super capacitive performance, has the advantages of being good in high-rate charge and discharge performance, long in circle life and the like, and can be applied to preparing super-capacitors and improve performance of super-capacitors greatly.
Owner:THE NAT CENT FOR NANOSCI & TECH NCNST OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products