Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2382 results about "Flake graphite" patented technology

Flake Graphite. Flake graphite is a natural of graphite that is found as flakes ranging in size from 50-800 micrometers in diameter and 1-150 micrometers thick. This form of graphite has a high degree of crystallinity.

Method for realizing large-scale preparation of monolayer oxidized graphene

The invention relates to a method used for realizing large-scale preparation of monolayer oxidized graphene. The method comprises the following steps: oxidizing natural crystalline flake graphite by an oxidant to obtain oxidized graphite; after ultrasonic stripping, carrying out filtration to remove unreacted graphite and obtain the aqueous solution of oxidized graphene; and adding a flocculating agent to obtain oxidized graphene solid after settlement, filtration and drying. The method can easily separate the oxidized graphene solid from aqueous dispersion solution through flocculating settlement, thereby realizing large-scale preparation of graphene; moreover, the method has cheap and accessible raw materials, easy operation, simple process and good reproducibility, and is suitable for large-scale industrial production. The monatomic oxidized graphene prepared by the method can be used as flake reinforced phase of composite materials to prepare materials with high mechanical property and barrier property; moreover, the oxidized graphene can also be used for preparing fingerprint collecting materials, and the like. Graphene, namely the reduction product of the oxidized graphene can be used for constructing two-dimensional photoelectron components such as nano computer chips, solar battery electrodes and field effect transistors and the like.
Owner:HUBEI UNIV

Large-capacity high power polymer ferric lithium phosphate power cell and preparation method thereof

The invention discloses a large-capacity high-power polymer lithium iron phosphate power battery. The weight ratio of anode slurry is as follows: 81 to 85 percent of lithium iron phosphate, 1 to 5.5 percent of superconduction carbon, 0 to 2.5 percent of conductive carbon soot, 0 to 4 percent of conductive black lead, 0 to 2.5 percent of crystalline flake graphite, 0 to 2 percent of carbon nanometer tube as well as 6 to 7.5 percent of polyvinylidene fluoride; the weight ratio of cathode slurry is as follows: 89 to 91 percent of cathode material, 1 to 3.5 percent of superconduction carbon, 0 to 2 percent of conductive carbon soot, 0 to 4 percent of conductive black lead, 2.5 to 3.5 percent of styrene-butadiene rubber as well as 1.5 to 2 percent of sodium carboxymethyl cellulose; the steps for preparing the battery are as follows: preparing slurry, coating the anode and the cathode, rolling and pressing a polar plate, transversely and separately cutting the polar plate, baking the polar plate, welding the polar ears of the anode and the cathode, preparing a battery cell, putting the electric core into a shell and sealing, baking the electric core, injecting liquid into the battery as well as forming the battery and dividing the volume of the battery. The invention relates to a lithium-ion secondary battery which can provide drive energies for electric tools, electric bicycles, motor cars and electric vehicles.
Owner:MCNAIR TECH

Heat-conduction heat-dissipation interface material and manufacturing method thereof

The invention provides a heat-conduction heat-dissipation interface material and a manufacturing method thereof, wherein the heat-conduction heat-dissipation interface material is applied to the field of heat dissipation of electronic products. The heat-conduction heat-dissipation interface material comprises a heat-conduction heat-dissipation layer and a surface protective material layer, wherein the heat-conduction heat-dissipation layer consists of one or more of graphite, nano graphite, crystalline flake graphite, graphene, pyrolytic carbon, pyrolytic graphite, graphite powder, carbon nano tubes, carbon fibers, graphite fibers, resin, ceramic fibers, quartz fibers, metal fibers, zirconia, boron nitride, silicon nitride, boron carbide, silicon carbide, magnesia powder, metasillicio acid fibers, calcium silicate aluminum fibers, aluminium oxide fibres, copper power, aluminium power, silver power, tungsten power and molybdenum power; and the surface protective material layer is a polymeric membrane. The heat-conduction heat-dissipation interface material manufactured according to the materials and the method provided by the invention has the advantages of effectively improved heat-dissipation performance, small volume, light weight and small thickness, can be used for prolonging the service life of an electronic component, and simultaneously is easy to produce and process.
Owner:SHANGHAI QI JIE CARBON MATERIALS

Method for preparing large-size high-quality graphene with controllable number of layers

The invention discloses a method for preparing large-size high-quality graphene with controllable number of layers, wherein graphite powder or flake graphite is mainly adopted as a raw material. The method specifically comprises the steps of intercalating the graphite raw material by virtue of an intercalating agent to initially weaken the intercalation interaction force and obtain different orders of graphite intercalation compounds (GICs); soaking the GICs in an appropriate expander, and then under the case that an auxiliary agent is added or not, enabling the intercalation materials to be quickly reacted with the expander to release a gases to obtain highly expanded wormlike graphene aggregate and further to cause the distances among graphene lamellar layers to be increased; and after certain processing, peeling, and then repeatedly centrifuging and dispersing to obtain a graphene dispersion with different numbers of layers. According to the method disclosed by the invention, the intercalation-expansion-peeling process is involved, raw materials are cheap, the reaction process is simple and easily controlled, and the number of layers of graphene is precisely controlled; the obtained graphene lamellar layers have the advantages of few defects, large size, high conductivity, high yield and the like, the large-scale industrial production is easily implemented, and the problems of high cost, low productivity, poor quality, small size, uncontrollable number of layers and the like in an existing graphene preparation technology are solved.
Owner:安徽百特新材料科技有限公司

Inorganic hydrated salt expanded graphite composite phase-changing heat storage material and preparation method thereof

The invention relates to an inorganic hydrated salt expanded graphite composite phase-changing heat storage material. In the preparation method thereof, 85-89 mass parts of inorganic hydrated salt sodium acetate trihydrate as a heat storage matrix, 5.5-6.5 mass parts of disodium hydrogenphosphate as a nucleating agent, 2.5-3.5 mass parts of carboxymethyl cellulose as a thickening agent, and 3-4.5 mass parts of expanded graphite is blended in an inorganic hydrated salt mixture as a material with a high thermal conductivity. Due to the use of the expanded graphite, the material not only maintains excellent properties of natural flake graphite such as good thermal conductivity, no toxicity and the like, but also has adsorbability which the natural flake graphite does not have. The invention solves the problems of sub-cooling degree, phase stratification and low thermal conductivity during the heat storage process. The composite phase-changing material has a low sub-cooling degree after the phase changing performance is improved, the solution thereof is uniform without sedimentation and stratification during the solid-liquid phase change, the performance is stable, the repeatability of good, and the phase-changing heat storage can be enhanced through improving the thermal conductivity of the material.
Owner:ENG COLLEGE OF ENG CORPS PLA UNIV OF SCI & TECH

Preparation method of composite heat conduction graphene film and composite heat conduction graphene film

The invention discloses a preparation method of a composite heat conduction graphene membrane and the composite heat conduction graphene film. The preparation method comprises the following steps: S1, putting crystalline flake graphite or graphite powder into a mixed solution of concentrated sulfuric acid, potassium persulfate and phosphorus pentoxide, soaking for a day and a night, then carrying out suction filtration, drying, and carrying out pre-oxidizing; S2, oxidizing pre-oxidized graphite further by adopting a Hummers method, that is, oxidizing fully in concentrated sulfuric acid and potassium permanganate, then adding deionized water for diluting, and carrying out repeated washing and suction filtration, so as to obtain an oxidized graphene aqueous solution; S3, spraying the oxidized graphene aqueous solution on a substrate by adopting a thermal spray method, and depositing, so as to obtain an oxidized graphene film; S4, reducing the oxidized graphene film, so as to obtain the graphene film; and S5, laminating the graphene film, so as to obtain the composite heat conduction graphene film. Compared with the prior art, the preparation method is simple, the cost is low, and the prepared composite heat conduction graphene film has a favorable heat conduction performance.
Owner:成都科愿慧希科技有限公司

Method for modifying epoxy resin through amino-terminated hyperbranched polymer-grafted graphene oxide

The invention discloses a method for modifying epoxy resin through amino-terminated hyperbranched polymer-grafted graphene oxide. The method comprises the following steps: preparing graphite oxide from flake graphite utilized as a raw material by adopting a Hummers oxidation method, adding the graphite oxide into a beaker, adding distilled water and forming a graphene oxide mixed solution by virtue of ultrasonic waves; stirring for dissolving triethylene tetramine in N,N-dimethylformamide, raising the temperature to 55-65 DEG C, dropwise adding a mixed solution of methyl methacrylate and methanol, continuously raising the temperature to 80-120 DEG C and reacting for 6-10 hours to get an amino-terminated hyperbranched polymer; further adding the graphene oxide mixed solution and NaOH, regulating the PH value to be 5-10, performing ultrasonic dispersion for 2-8 hours at the temperature of 80-120 DEG C, evaporating the methanol, cooling to room temperature, adding water to precipitate a product, drying to get the amino-terminated hyperbranched polymer-grafted graphene oxide capable of toughening and modifying the epoxy resin. The method disclosed by the invention is wide in raw material source, simple in preparation process, pollution-free, lower in cost and beneficial to industrial large-scale production.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Preparation method of graphene oxide modified polycarboxylic acid type water-reducer

The invention relates to a preparation method of a graphene oxide modified polycarboxylic acid type water-reducer. A polycarboxylic acid type water-reducer is a novel efficient water-reducer following a naphthalene type water-reducer, a melamine water-reducer and an amino sulfonic acid based water-reducer, but the mechanical property of concrete cannot be obviously improved by adding the polycarboxylic acid type water-reducer. The preparation method comprises the steps of preparing graphene oxide with natural flake graphite, sodium nitrate, concentrated sulfuric acid and potassium permanganate as raw materials; carrying out ultrasonic dispersion on the graphene oxide; and then adding the polycarboxylic acid type water-reducer with a certain proportion to form an intercalation compound of the graphene oxide and the polycarboxylic acid type water-reducer. With the adoption of the modified water-reducer, on the basisthat the existing water-reducing rate is kept, the flexural strength and the compressive strength of a cement-based composite are obviously strengthened, the relevant raw materials are easily obtained, a preparation technology is reasonable, pollution in a preparation process is little, the performance of products is excellent, and the graphene oxide modified polycarboxylic acid type water-reducer is suitable for industrial production.
Owner:广西科达新材料集团有限公司

Flake MoS2/graphene composite aerogel and preparation method thereof

The invention relates to a flake MoS2/graphene composite aerogel and a preparation method thereof and belongs to the technical field of anode materials of lithium ion batteries. The preparation method comprises the following steps: ultrasonically dispersing a certain quantity of graphene oxide solution into deionized water, adding a certain quantity of water-soluble molybdate and thiourea, then adding 0.1-3mL organic amine solution, taking out a cylindrical product after hydrothermal reaction at the temperature of 160-240 DEG C, freeze-drying, and then carrying out thermal treatment for 2h in the mixed atmosphere of argon and hydrogen at the temperature of 800 DEG C to obtain the flake MoS2/graphene composite aerogel. According to the flake MoS2/graphene composite aerogel and the preparation method thereof disclosed by the invention, thin layers of graphene are connected with one another in a staggering mode to form a three-dimensional ordered conductive network and form micron pore canals, MoS2 is uniformly dispersed on the ultra-large superficial area, and thus, the problems of volume expansion and crushing materials are effectively solved; meanwhile, the structure stability and the cycle performance of the flake MoS2/graphene composite aerogel, serving as the anode material, are improved.
Owner:SHANGHAI UNIV

Copper-carbon composite material and preparing method thereof

The invention discloses a copper-carbon composite material and a preparing method thereof. Natural flake graphite, colloidal graphite, nano graphite, carbon fiber and the like can be selected as a carbon material in the copper-carbon composite material. The preparing method of the copper-carbon composite material includes the steps that firstly, a chemical nickel plating method is used for preparing a nickel plating carbon material; then a chemical copper plating method is used for plating copper on the nickel plating carbon material; and finally, vacuum semi-solid-state low-pressure sintering is conducted on the copper plating carbon material under the copper melting point temperature, and the copper-carbon composite material is prepared. The copper-carbon composite material and the preparing method thereof have the beneficial effects that a layer of even thin nickel plating layer is formed on the surface of carbon through the nickel plating method so as to reduce the wetting angle of the carbon material, the copper plating layer is formed on the surface of the nickel plating carbon material through the copper plating method so that a three-dimensional copper network can be formed by the material in the sintering process, and the bonding strength of a base body is improved through vacuum semi-solid-state low-pressure sintering. The two phases of the base body and the carbon of the copper-carbon composite material prepared through the method are distributed evenly and are well combined, and the good electricity and mechanical properties and the good frictional wear performance are achieved.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products