Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

398 results about "Fe element" patented technology

Zirconium cladding surface resistant to high temperature and oxidation ZrCrFe/AlCrFeTiZr composite gradient coating preparing technology

The invention discloses a zirconium cladding surface resistant to high temperature and oxidation ZrCrFe/AlCrFeTiZr composite gradient coating preparing technology. Ultrahigh vacuum multitarget co-sputtering technique is adopted, a ZrCrFe/AlCrFeTiZr composite gradient alloy resistant to high temperature and oxidation protecting coating is prepared on the surface of a zirconium alloy base body, and the zirconium cladding surface resistant to high temperature and oxidation ZrCrFe/AlCrFeTiZr composite gradient coating preparing technology comprises the steps of predepositional treatment, bias voltage anti-splash washing and ZrCrFe/AlCrFeTiZr composite gradient alloy coating deposition. The preparing process of the composite coating is divided into two steps, the first step is to prepare ZrCrFe gradient transition layer coating, in a deposited ZrCrFe transition layer, the atomic percentage content of Zr element is changed from the gradient of 100 at%-35 at% in the thickness direction, the atomic percentage content of Cr element is changed from the gradient of 0 at%-33 at% in the thickness direction, and the atomic percentage content of Fe element is changed from the gradient of 0 at%-33 at% in the thickness direction; the second step is to prepare a AlCrFeTiZr high-entropy alloy coating, in a deposited AlCrFeTiZr high-entropy alloy coating, the atomic percentage content of Al element is controlled in 0.5 at%-1.0at %, and the atomic percentage of other elements is between 10 at%-35 at%. Bonding force of the coating prepared by the technology is excellent, the surface is dense and uniform, and the coating has excellent performance such as high strength, resistance to high temperature and oxidation and irradiation resistance.
Owner:田雨

Eucalyptus ecological fertilizer containing Mn and Fe elements and fertilizing method

ActiveCN102503675AMeet nutrient needsImprove resistance to natural disasters (typhoonFertilising methodsFertilizer mixturesFrostAdditive ingredient
The invention discloses a eucalyptus ecological fertilizer containing Mn and Fe elements and a fertilizing method. The eucalyptus ecological fertilizer containing the Mn and Fe elements is prepared by mixing inorganic nutrients, organic fertilizers and a bonder, and includes following effective ingredients in mass percents of: 7-20 percent of the inorganic nutrients, 4-15 percent of P2O5, 4-20 percent of K2O4, 0.05-0.2 percent of B, 0.05-0.1 percent of Zn, 0.01-0.05 percent of Cu, 0.01-0.2 percent of Mn, 0.01-0.2 percent of Fe, 5-25 percent of organic matters and 0.15-5 percent of the bonder. According to the eucalyptus ecological fertilizer disclosed by the invention, major elements, secondary elements and trace elements are matched according to a reasonable proportion, and a property amount of the organic fertilizers are added, so that not only can the nutrient requirements of the eucalyptus growth be met, the use ratio of the fertilizer is improved, and the wastage rate of the fertilizer is decreased, but also the stress resistance and the lodging resistance of eucalyptus are enhanced, the capacity of resisting natural calamities (such as typhoon and frost), the loss is reduced and the economic benefit is improved.
Owner:GUANGXI LIYUANBAO SCI & TECH

Alterant of iron-rich phase in secondary aluminum and alteration method

The invention relates to an alterant of an iron-rich phase in secondary aluminum and an alteration method. The alterant is composed of a [Mn] agent and a [B] agent. The alteration method includes the steps that part of secondary aluminum is heated to form a melt, then the [Mn] agent is added, the remaining secondary aluminum is added after the [Mn] agent melts, the [B] agent is added, refining is carried out after the [B] agent melts, pouring is carried out after standing is carried out for a period of time, and the secondary aluminum obtained after alteration treatment is obtained. According to the alterant and the alteration method, the Fe element in the iron-rich phase can be replaced through the [Mn] agent, the advantage growth orientation of the iron-rich phase is changed, and therefore a needle-like beta-Fe phase is eliminated; meanwhile, the forming temperature of the iron-rich phase can be reduced through B in the [B] agent, the growth time of a primary iron-rich phase is shortened, the growth space of the primary iron-rich phase is reduced, the B can also serve as a surface-active element, and is absorbed to the surface of the iron-rich phase in the initial phase of formation of the iron-rich phase, and growth of the iron-rich phase is restrained, so that through the combined action of the [Mn] agent and the [B] agent, existence of the needle-like iron-rich phase and the primary iron-rich phase can be completely eliminated, the uniform Chinese character type iron-rich phase is obtained; and in addition, the adding amount of the Mn can be greatly reduced, and the mechanical performance and the machining performance of the secondary aluminum can be greatly improved.
Owner:GUANGDONG INST OF NEW MATERIALS

Method for preparing multi-element doping lithium iron phosphate by taking ferrous metallurgy sludge as main raw material

InactiveCN101651204AOvercoming the limitations of relying solely on multiple chemical reagentsReduce manufacturing costElectrode manufacturing processesSludgeLithium-ion battery
The invention discloses a method for preparing multi-element doping lithium iron phosphate by taking ferrous metallurgy sludge as main raw material, belonging to the preparation technical filed of cathode material of lithium ion batteries. In the method, Fe-base multi-element alloy phase containing multiple doping elements is obtained from the ferrous metallurgy sludge by a reduction and magneticseparation method, the Fe-base multi-element alloy phase is oxidized to obtain composite oxide which is Fe source and a multi-doping-element source, Li and P are added in by chemical metering, and multi-element doping lithium iron phosphate is synthesized by roasting under the protection of inert gas such as N2 or Ar. The Fe element and multiple doping elements (a plurality kinds of Zn, Cr, Ni, Mo, V, Mn, Ti or all) for preparing the multi-element doping lithium iron phosphate are from the ferrous metallurgy sludge, thereby overcoming the limitation that the raw material for preparing the multi-element doping lithium iron phosphate depends on various chemical agents singly, providing a new pathway for high value-added utilization of the ferrous metallurgy sludge while reducing the preparation cost.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

Rear earth-ferrotitanium hydrogen storage alloy for wind power storage and preparation method thereof

The invention belongs to the technical field of hydrogen storage alloys, and relates to a rear earth-ferrotitanium hydrogen storage alloy for wind power storage and a preparation method thereof. The rear earth-ferrotitanium hydrogen storage alloy consists of Ti, Fe, Mn, multi-component rear earth and few LaNi5 alloy, and has a chemical formula as follows: Ti1.1-xFe0.8Mn0.2Mx+yLaNi5, wherein x is an atomic ratio greater than 0 and less than or equal to 0.09, y is mass percent greater than or equal to 2% and less than or equal to 8%, and M is multi-component rear earth which further contains at least one of Ce, Y, Nd, Pr and Gd in addition to La with the atomic ratio of 0.5-0.7. The alloy is prepared by the following steps: proportioning, carrying out vacuum smelting, carrying out rapid quenching, carrying out mechanical crushing and carrying out ball-milling. The rear earth-ferrotitanium hydrogen storage alloy mainly adopts Ti and Fe elements which are rich in the natural world and cheap, so that large-scale popularization and application are facilitated. Compared with a smelting and annealing process, the alloy with high-density nanocrystalline grains is prepared through the rapid quenching process; and by virtue of mechanical ball-milling, the alloy forms high-density crystal defects. The rapid quenching process and the ball-milling process are simple and easy to grasp, so that the preparation method is suitable for large-scale production.
Owner:CENT IRON & STEEL RES INST

Flexible metal substrate connected with back electrode of solar battery and fabrication method thereof

The invention discloses a flexible metal substrate connected with a back electrode of a solar battery and a fabrication method thereof. The flexible metal substrate has a structure made of stainless steel strip/copper/nickel/nickel-molybdenum alloy, wherein a nickel layer and a nickel-molybdenum alloy coating layer serve as diffusion barrier layers which are both multi-layer coating layers; and the mass content of molybdenum in the nickel-molybdenum alloy coating layer in the diffusion barrier layers is gradually increased from 10% to 80% layer by layer along the growth direction of the coating layer. Therefore, the diffusion of copper and Fe element in the steel strip can be effectively prevented, no new harmful elements are introduced, and the nickel-molybdenum alloy with high molybdenum content can enhance the bonding force between the substrate and a back electrode (Mo layer). Meanwhile, a Cu layer serves as a main current conduction layer, so that the Mo layer is only used as theback contact layer capable of forming good ohmic contact with an absorption layer. The flexible metal substrate used as the substrate of a CIGS (copper indium gallium selenide) solar battery can greatly lower the requirement on the thickness of the Mo layer, and the flexible substrate described in the invention can be manufactured continuously with low cost and high efficiency on a continuous electroplating production line.
Owner:HUNAN YONGSHENG NEW MATERIALS

Corrosion-resistant and high-strength and toughness Zn-Fe-Li-based zinc alloy capable of being degraded in human body and application of corrosion-resistant and high-strength and toughness Zn-Fe-Li-based zinc alloy

The invention discloses a corrosion-resistant and high-strength and toughness Zn-Fe-Li-based zinc alloy capable of being degraded in a human body and an application of the corrosion-resistant and high-strength and toughness Zn-Fe-Li-based zinc alloy, relates to field of medical implantation materials, and provides the corrosion-resistant and high-strength and toughness Zn-Fe-Li-based zinc alloy which is low in cost of added materials, high in strength, good in plasticity and controllable in degradation rate, has non-expanding and non-migrating degradation products and can be simultaneously degraded in the human body against the defects in the prior art. The zinc alloy comprises Zn, Fe and Li elements, wherein the content of the Zn element in mass percentage is 80-99.997%, the content of the Fe element in mass percentage is 0.002-10%, and the content of the Li element in mass percentage is 0.001-10%. The cost of the materials added into the zinc-based alloy disclosed by the invention is low, the degradation products of various components in the prepared alloy material can be degraded in the human body by metabolism, the corrosion resistance is much higher than that of a magnesium alloy, the degradation speed is greatly reduced, the mechanical support can be provided for a longer time, and the alloy material has good strength and toughness.
Owner:XIAN ADVANCED MEDICAL TECH

Method for producing RE510L steel of thin specification based on ESP sheet billet continuous coasting and rolling procedure

The invention provides a method for producing RE510L steel of a thin specification based on an ESP sheet billet continuous coasting and rolling procedure. The method includes the steps that raw materials are selected, and the raw materials comprise, in percentage by mass, 0.03-0.07% of C, 0.10-0.40% of Si, 0.90-1.40% of Mn, 0.02-0.04% of Als, 0.008-0.020% of Ti, 0.01-0.03% of Nb, less than or equal to 0.0030% of S, less than or equal to 0.015% of P, less than or equal to 0.004% of N and the balance Fe elements; the raw materials are subjected to converter smelting and LF furnace and RH furnace refining; molten steel formed through RH furnace refining generates hot rolling strip steel of different thicknesses through an ESP production line; in the ESP production line, the rough rolling outlet temperature is 920-980 DEG C, the finish rolling outlet temperature is 800-870 DEG C; the hot rolling strip steel is cooled in a front segment laminar flow cooling manner, and the hot rolling strip steel is cooled to 550-620 DEG C and then enters a recoiling machine to be coiled into coiled strip steel; and after the coiled strip steel is cooled, leveling, coiling and entering warehouse are performed by adopting the leveling quantity of 1-2.0%. By means of the method, problems that traditional hot rolling is high in cost, energy consumption is large and the like are solved.
Owner:RIZHAO STEEL HLDG GROUP

Method for detecting total iron in iron ore based on laser-induced-breakdown spectroscopy

The invention discloses a method for detecting total iron content in iron ore by using an improved internal standard method combined with laser-induced-breakdown spectroscopy. The method comprises the following steps: adding different masses of analytically pure iron trioxide to a to-be-detected iron ore sample A, cladding and tabletting to obtain a sample B by using polyethylene powder; collecting data at different positions on the sample B by using a laser-induced-breakdown spectroscopy system; carrying out qualitative analysis on the iron ore by combining with characteristic spectral line information of an Fe element in a database for national institute of standards and technology (NIST); sorting out the characteristic spectral line of the Fe element; selecting FeI438.5813nm as an analytical line, and the MnI405.5210nm as an internal standard line according to the selection criteria of the analytic line and an internal standard line; building a linear equation by taking the strength difference of two spectral lines as a Y axis and the concentration gradient of Fe in the sample B as an X axis, wherein the intercept obtained from a straight line by extension and an X axis is the mass percent of the Fe element. The method is simple to operate, environment-friendly, easy to process data, and high in accuracy.
Owner:NORTHWEST UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products