Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

432 results about "Si element" patented technology

Semi-steel steelmaking method

The invention discloses a semi-steel steelmaking method, wherein the method comprises the steps of: adding raw materials into a steel making furnace, blowing oxygen into the furnace to obtain molten steel and slag; the raw materials comprises raw steel, lime, high-magnesium lime and acid composite slag; the raw steel contains semi-steel after vanadium extraction; the addition of the acid composite slag meets the following formula: W (acid composite slag) is equal to (( (CaO (lime) plus CaO (high-magnesium lime) minus SiO2 (oxidized semi-steel) multiplied by R) divided by R ) divided by SiO2% (acid composite slag) ) multiplied by K, wherein W acid composite slag refers to the addition of the acid composite slag, CaO lime refers to the quantity of CaO brought in by the lime, CaO high-magnesium lime refers to quantity of CaO brought in by the high-magnesium lime, SiO2 oxidized semi-steel refers to the quantity of SiO2 converted from the quantity of Si element in the semi-steel, R refers to the alkalinity of slag, and ranges from 3 to 5, SiO2% acid composite slag refers to the weight percentage of SiO2 in the acid composite slag, and K refers to a fluctuation coefficient with a value ranging from 0.98 to 1.02. The semi-steel steelmaking method can achieve good dephophorization and desulfurization and is applicable to the automation production.
Owner:PANZHIHUA IRON & STEEL RES INST OF PANGANG GROUP +2

Manufacturing method of steel

InactiveCN101660020AAvoid strong churningImprove securitySlagCu element
The invention provides a manufacturing method of steel, comprising the following steps: smelting the molten steel to ensure that the content of P in the molten steel is less than or equal to 0.035%, the content of S is less than or equal to 0.015% and the content of V is less than or equal to 0.15%; then adding Cu element and Ni element to the molten steel to ensure that the content of Cu in the molten steel is 0.20-0.60% and the content of Ni is 0.15-0.55%; tapping to a steel ladle when the content of C in the molten steel is below 0.05%; adding physical mixture of lime and fluorite and predeoxidizing agent to the steel ladle in the tapping process to ensure that the content of S in the molten steel is less than or equal to 0.012%; adding Cr element, Si element and Mn element to the molten steel to ensure that the content of Si in the molten steel is 0.25-0.60%, the content of Mn is 0.80-1.60% and the content of Cr is 0.20-0.80%; feeding Al simple substance to the molten steel to carry out final deoxidation; heating the molten steel in the condition of argon blowing to lead the steel slag to melt; then adding Al simple substance to the steel ladle to ensure that the content of S in the molten steel is less than or equal to 0.010%; and then adding C element to the molten steel to ensure that the content of C in the molten steel is 0.08-0.16%; feeding Al simple substance and alloy containing Ti, V and N to the molten steel to control that the content of acid-soluble aluminium in the molten steel is 0.025-0.040%, the content of Ti is 0.005-0.015%, the content of V is 0.08-0.15% and the content of N is 0.010-0.020%.
Owner:PANZHIHUA IRON & STEEL RES INST OF PANGANG GROUP +3

Titanium alloy with thin sheet layer microstructure and manufacturing method thereof

ActiveCN101967581ABeta phaseStable element
The invention provides a titanium alloy with a thin sheet layer microstructure and a manufacturing method thereof. The titanium alloy is characterized in that: 1) a certain amount of Si element is added into the alloy so that Ti5Si3 or Ti2Si type silicide can be dissolved out from the alloy under a certain condition; 2) controlling the adding amount of alloying elements, namely Zr, Sn and beta stable elements, which affect the dissolving temperature of the silicide so as to guarantee that the alpha + beta / beta transformation temperature of the titanium alloy is lower than the dissolving temperature of the silicide; 3) fully deforming the alloy at the temperature of below the dissolving temperature of the silicide, and finally properly deforming the alloy in the alpha + beta phase area over 1 to 2 fire, wherein the primary beta crystallite dimension of the alloy after thermal treatment is less than 200 mu m and the alloy has a thin sheet lamellar structure. The invention also provides a titanium alloy component and a corresponding smelting, hot working and heat treatment process. The thin sheet layer titanium alloy of which the primary beta crystallite dimension of the alloy after thermal treatment is less than 200 mu m can be prepared by the process. The titanium alloy has relatively high strength and plastic toughness matching, is a high-strength, high-toughness and high-temperature resistant titanium alloy material and is expected to be well popularized and applied in the field of aerospace.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI +1

Cf/C-SiC composite material as well as preparation method and application thereof

The invention designs a composite material. The composite material comprises carbon-fiber perform, matrix carbon, filler and diamond-like carbon, wherein the matrix carbon is uniformly adhered on the carbon fiber of the perform to form the carbon-fiber perform with the matrix carbon; the filler fills the inside of the carbon-fiber perform with the matrix carbon and coats the outside of the carbon-fiber perform with the matrix carbon to form a semifinished product; the diamond-like carbon comprises a diamond-like carbon layer coated on the semifinished product; and the filler contains a Ti element, a Si element, a C element and a Mo element. The composite material has the advantages that a method of combining four processes of CVI, SI, RMI and PECVD to prepare a finished product with the advantages of high compactness, low thermal expansion coefficient and friction coefficient, high self-lubricating property, high thermal conductivity, oxidation resistance, thermal shock resistance, ablation resistance, wear resistance, high strength and toughness and the like; and simultaneously, the process is simple, the preparation period is short, the equipment requirement is low, the cost is low, net shaping can be realized and convenience is brought for large-scale industrial application.
Owner:XIANGTAN UNIV

High-temperature-oxidization-resistant coating material for hot-stamped formed steel and hot-dipping plating technology

The invention discloses a high-temperature-oxidization-resistant coating material for hot-stamped formed steel and a hot-dipping plating technology. A plating solution comprises the following components in percentage by mass: 5.0-20.0% of Si, 0.5-10.0% of Ni, 0.1-12.0% of Ce, 0.1-2.0% of La, not more than 1.0% of Fe, and the balance of Al and inevitable impurities. According to the coating material, the grain size of the texture can be effectively refined by adding rare earth and other elements in the plating solution; the coating is an Al-Si-Ni-rare earth material, Al and Si elements are main components of the coating and are combined with ferrum to generate a ferro-silicon-aluminum phase and further improve the oxidization resistance capability, the melting point of aluminum silicon can be further improved by Ni, and the grain size of the coating can be refined through the rare earth elements; therefore, the coating has the characteristics that the high-temperature oxidization resistance performance is excellent, the surface is difficult to crack after hot-stamped forming, and the coating is not adhered to a mold. Elements in the coating obtained by adopting the technology are uniformly distributed and organized with high density, are closely combined with a substrate, thus having high high-temperature oxidization resistance performance; during heating process, the high-temperature-oxidization-resistant coating material does not stick a furnace bottom roll, a steel substrate and a stamping mold can be better protected.
Owner:HEBEI IRON AND STEEL

Low-alloy high-intensity high-toughness steel and production method of low-alloy high-intensity high-toughness steel

The invention discloses low-alloy high-intensity high-toughness steel and a production method of low-alloy high-intensity high-toughness steel. The method comprises the following work procedures of: the casting work procedure: the casting is carried out according to the following ingredients and contents to obtain low-alloy steel cast ingots: 0.15 to 0.30 weight percent of C elements, 0.30 to 0.70 weight percent of Si elements, 0.60 to 1.00 weight percent of Mn elements, 0.60 to 1.10 weight percent of Cr elements, 0.50 to 1.00 weight percent of Ni elements, 0.20 to 0.60 weight percent of Mo elements and the balance Fe and unavoidable impurities; the forging work procedure: the low-alloy steel cast ingots are forged, in addition, the blank opening forging heating temperature is 1160 DEG C to 1200 DEG C, the final forging temperature is 650 DEG C to 900 DEG C, and the deformation in each firing time is not smaller than 30 percent; and the heat treatment work procedure: the temperature of the forged and formed forgings is raised to 900 to 940 DEG C to be subjected to normalizing, the temperature is raised to 880 to 920 DEG C for carrying out quenching after the normalizing treatment, the temperature is raised to 530 to 600 DEG C for carrying out high-temperature tempering after the quenching treatment, and the low-alloy high-intensity high-toughness steel is obtained. In the embodiment of the invention, the low-alloy high-intensity high-toughness steel has high intensity and high toughness.
Owner:SANY GRP

Core-skin structure micropore silicon carbide fiber and method for producing the same

The invention relates to skin-core structure micro-pore silicon carbide fiber and the preparation method, the fiber is characterized in that both the skin layer and the core part contain the micro-pore with pore diameter less than 2 nm, and the micro-pore volume content of the skin is higher than the core part; the ratio between the skin layer thickness and the radius is 0.1 to 0.9; according to the differences of the skin thickness, the specific surface area of the fiber is 400m<2> / g to 1400m<2> / g, and the average pore diameter is 1.30 to 1.60 nm; the C content of the skin layer is more than 90 wt percent, the residual is Si, or Si and O; the C content of the core part is 27 to 35 wt percent, the O content is 10 to 20 wt percent, and the residual is Si. The preparation method is characterized in that the Si element of the skin layer is etched through the KOH activation method and the skin-core structure is formed, simultaneously, the micro-pore with higher proportion is formed, the specific surface area and the conducting property of the fiber can be adjusted through the method. The skin-core structure micro-pore silicon carbide fiber of the invention can be used in the physico chemical adsorption field, catalyst carrier field, and wave-absorbed stealth field.
Owner:NAT UNIV OF DEFENSE TECH

Welding wire for connection of aluminum/steel dissimilar alloy and processing process thereof

The invention aims to provide a welding wire for connection of aluminum / steel dissimilar alloy and a processing process thereof. The welding wire has a good comprehensive performance, adopts a special element to substitute the Si element, ensures good flow of solder and reduces the brittleness of the compound layer on the joint interface. In the technical scheme, the welding wire is prepared through adding such elements as Ag, Mn, Mg, Ti, Zr and Zn with Al-Cu as a matrix. The processing process of the welding wire comprises stock preparation, melting, component analysis, extrusion, wire drawing and cleaning. The invention has the advantages that: due to the high content of Cu element, the invention can inhibit the growth of the compound layer on the interface, improve the performance of the Al-Fe compound layer, and particularly improves the crack resistance of the compound layer; since the Ag element, the aluminum and the steel all have high affinity, the invention can enhance the flowing property of liquid solder in the steel surface; the Mn and Ti elements can improve the performance of the compound and the flowing property of the solder; the Mg and Zn elements can promote the flowing property of the solder and improve the strength of the welding wire; and the refined grain of Zr can also enhance the strength of the welding wire.
Owner:HARBIN INST OF TECH

Component design and production method of 1500 MPa-grade low-carbon and medium-manganese copper-contained steel

The invention relates to component design and a production method of 1500 MPa-grade low-carbon and medium-manganese copper-contained steel. The 1500 MPa-grade low-carbon and medium-manganese copper-contained steel comprises the following chemical components in percentage by mass: 0.20-0.23% of C, 0.5-0.8% of Si, 3.5-4.0% of Mn, 1.2-2.0% of Al, 0.5-1.0% of Cr, 0.6-1.0% of Cu, 0.2-0.5% of Ni, 0.003-0.012% of N, 0.00051-0.003% of B, and the balance of Fe and inevitable impurities. One part of alloy elements are added based on traditional TRIP steel to largely increase the content of manganese to reach the medium-manganese range; when Al is used for replacing the Si elements, a proper amount of Si elements are retained, so that the Al and Si elements are matched for use; and a certain quantity of precipitation-hardened Cu elements are added to match with a proper amount of Ni elements for use to eliminate the hot brittle phenomenon caused by Cu in hot working. In addition, few Cr elements are added; a proper amount of N elements are added to match with the Al elements for use; through matching between hot rolling and hot partition processes, a martensite+residual austenite+separated second-phase particle structure with ultrahigh strength and excellent plasticity is obtained; and the tensile strength exceeds 1500 MPa.
Owner:SHANDONG JIANZHU UNIV

Method for producing sludge modifier by utilizing coal gangue

The invention discloses a method for producing sludge modifier by utilizing coal gangue, comprising the following steps: fully and evenly mixing the coal gangue and carbonate, and calcining; soaking the calcined solid matter by water, and filtering to obtain filter residue and alkaline filter liquor; dissolving the filter residue by adopting the acid liquor, and filtering to obtain the alkaline filter liquor; mixing the acidic filter liquor and the alkaline filter liquor; respectively adjusting the alkalinity and the acidity of the mixing system and the concentration of SiO3<3->, Al<3+> and Fe<3+>; carrying out polymerization reaction; carrying out spray drying after the polymerization reaction to obtain the sludge modifier taking polysilicate aluminum iron as a main component. Compared with the prior art, the technical scheme of the invention activates the coal gangue by utilizing a high temperature condition, simultaneously realizes the extraction and separation of Si element, simplifies the production process, and adopts the low-price carbonate as an auxiliary raw material, thus saving the production cost, and multi-element extraction is carried out on the raw materials of the coal gangue, thus improving the use ratio of the raw materials of the coal gangue.
Owner:TIANJIN TEDA ENVIRONMENTAL PROTECTION +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products